慣性計測装置によるセルトの自発的跳躍測定

青山 直樹*・鬼追 一雅*

(令和4年10月20日受付)

Measurement of Self-induced Jumping of Celt using IMU

Naoki AOYAMA and Kazumasa KIOI

(Received Oct. 20, 2022)

Abstract

For experimental verification of self-induced jumping shown by Batista's simulation \square , the authors have previously performed an analysis by using a high-speed camera. However, clear self-induced jumping couldn't be observed. Next, we aimed to detect self-induced jumping by measuring the acceleration in the direction perpendicular to a desktop surface using an inertial measurement unit (IMU) BWT901. We analyzed the time variation of the acceleration component $a_{z'}$ perpendicular to a desktop surface under the assumption that the acceleration components due to roll, pitch, and spin are sufficiently smaller than the gravitational acceleration. As a result, signs of self-induced jumping could be observed although a clear jumping could not be detected. In this paper, we describe the details of the experimental results.

Key Words: self-induced jumping, celt, rattleback, IMU

1. はじめに

セルトはコマの一種で,Fig.1のように底面が楕円体の 形状をしている.「ラトルバック」あるいは「ウォブルス トーン」とも呼ばれる.机などの水平で滑らかな平面上で 回転させるとガタガタと振動し,やがて逆方向に回転す る.セルトは例えば最初z軸周りに時計回りに回転を与え ると,しばらくして反転し,反時計回りの回転を開始す

る.一見すると角運動量保存則を破っているかのように見 える不思議な運動をする玩具である^[2].

x 軸周りの回転をロール, y 軸周りの回転をピッチ, z 軸周りの回転をスピンと呼ぶ.また,セルト上部の楕円形 に関して,長軸半径 a,短軸半径 b と呼び,セルト高さを 極軸半径 c とする.

Fig.2. セルトの長軸半径 *a*, 短軸半径 *b*, 極軸半径 *c*. 上が平面図, 下が正面図.

^{*} 広島工業大学情報学部情報工学科

セルトのスピン反転現象に関しては過去100年以上にわ たって様々な研究がされてきた^[3]. これまでの研究による と,強反転方向からの反転トルクはピッチ振動,弱反転方 向からの反転トルクはロール振動が不安定化することで生 じることが知られている^[4]. セルトの反転のメカニズム自 体は明らかになっているが,種々の条件に対する詳細な振 舞いについては一部しか明らかになっていない. また実験 的な検証はほとんどなされていない.

今回,我々は慣性計測装置(IMU)BWT901を利用して 机上面に垂直な加速度成分 aZ の時間変化を観測し,半楕 円体型セルトの自発的跳躍現象の検出を試みた.その結 果,自発的跳躍現象の兆候は観測できたが,明確な跳躍を 捉えるには至らなかった.本稿ではその詳細を報告する.

2. 先行研究

Fig.3は Ljubljuana 大学の Batista によって示された, 回転楕円体における自発的跳躍現象のシミュレーショ ン^[1] の例である.

Fig.3. Batista による自発的跳躍のシミュレーション結果^[1].

図中,上段のω1はロール振動の角速度,中段のθはピッ チ振動の角度を示している.そして下段のZ^bは机面から 重心までの高さ距離Z^cと、回転楕円体の最下点から重心 までの高さhとの差分を表している.すなわち下段のZ^b の値が0の時には回転楕円体は机と接触しており,正の値 を取るときには空中に浮いていることを表している.初期 角速度は1800rpmすなわち30回転/秒を与えた場合のシ ミュレーション結果である.Fig.3において,最初のジャ ンプは時刻1.746まで空中に浮いており,最大0.461の高さ までジャンプしている.シミュレーションに用いた回転楕 円体の主軸の長さは30.2mmである.シミュレーションの 基準単位から計算すると空中滞在時間は71ms,最大ジャ ンプ高さは7.49mmである.実際のセルトの初期回転角速 度はシミュレーションよりも1桁以上小さく,このように 大きな自発的跳躍は生じにないと予測される. 筆者らは2020年にハイスピードカメラによる直接観察を 試みた. 観察には長時間の撮影が可能なデジモ製のハイス ピードカメラを使用した. Fig.4はフレームレート750FPS で撮影した木製のセルトの映像の一部であるが,映像では 明確な跳躍を捉えられなかった.

Fig.4. ハイスピードカメラによる直接観察例. 明確な跳躍は捉えられなかった.

3. 慣性計測装置 BWT901 による実験

3.1 実験環境

今回我々はWitmotion 社製慣性計測装置 BWT901を用 いてセルトの自発的跳躍現象の観測を試みた.データ取得 用ソフトウェアとしてはWitmotion 社から提供されてい る MiniIMU (ver6.1.2)を使用した.セルトを回転させる ステージとしてアクリル板を用いた.慣性計測装置 BWT901は右手系の座標系が採用されている.加速度の最 大値は±16G (精度0.01G)で, x軸周りの角度とz軸周り の角度は±180°, y軸周りの角度は±90°(精度0.01°)で ある.サンプリング周波数は200Hz すなわちサンプリング 間隔5 ms である.

3.2 慣性計測装置の取り付け

セルト上部に慣性計測装置を取り付ける為, Fig.5のようにプラスチック製の六角ナットを4か所に接着剤で固定した.

BWT901は自作ドータボードを介してリチウムポリマー 電池(40mAh)とコネクタで接続できるようにした. 自 作ドータボードとBWT901マザーボードはピンヘッダで 一体化し、プラスチック製ボルトでセルト本体に固定し た. 慣性計測装置全体の大きさは25.6mm角, 質量はリチ ウムポリマー電池を含めて7.64g である.

Fig.5. 支柱となる六角ナットを取り付けた アクリル製セルト

Fig.6. BWT901ボードと自作ドータボードをプラス チック製ボルトでセルトに固定した.

鉛製の重りはセルト上面の縁に両面テープで接着した. Fig.7に示すように2つの重りの中心点を結ぶ直線と形状 主軸のなす角を重りねじれ角ζとする.

Fig.7. セルトの重りねじれ角 ζ

3.3 実験手順

実験では、セルト上部におもりを取り付けて手回しによ りアクリル板上で回転させてデータを取得した.実験は形 状の異なる4種類のセルトを用いた(試料名をD3. B2.5, B3, C4とした).各セルトの形状パラメータ値を Table1に示す.各セルトの極軸半径cは全て10mmで同 ーである.質量はD3が19.93g, B2.5が30.70g, B3が 24.75g, C4が22.88gである.

Table 1.	各セル	トの形状パラ	メータ値
----------	-----	--------	------

試料名	D3	B2.5	В3	C4
a (mm)	40	50	50	15
<i>b</i> (mm)	20	25	20	20
<i>c</i> (mm)	10	10	10	10
b/a	0.5	0.5	0.4	0.25
$M\left(\mathbf{g} ight)$	19.93	30.70	24.75	22.88

また Fig.8には各セルトの上面楕円形状とその楕円率 b/ aを比較する図を示す.

Fig.8. 各セルトの上面楕円形状とその楕円率 b/a

各セルトの重り径 Φ ,重りねじれ角 ζ を変えて実験を 行った.重り径 Φ =5, Φ =6, Φ =8, Φ =9, Φ =10 の重りの質量はそれぞれ0.7g, 1.3g, 3.1g, 4.4g, 6.0g で ある.

実験条件をまとめると,

- (1) D3(40-20-10), $\phi = (5, 6, 8, 9, 10)$, $\zeta = (15, 20, 30)$, b/a = 0.5,
- (2) B2.5(50–25–10), $\phi = (5, 8, 9, 10)$, $\zeta = (15, 20, 30)$, b/a = 0.5,
- (3) B3(50-20-10), $\phi = (10)$, $\zeta = (15, 20, 30)$, b/a = 0.4.
- (4) C4(60-15-10), $\phi = (6, 8, 9, 10)$, $\zeta = (15, 20, 30)$, b/a = 0.25

Fig.9はアクリル板上に置いたセルトの様子である.手 回しによって初期スピン回転を与えた.各条件について, 上から見てアクリル板の中央,左上,左下,右上,右下の 順番で計5回ずつ実験を行った.

測定データは BWT901と Bluetooth 接続された PC にリ アルタイムで送信され, MiniIMU によって txt データで 記録される. txt データには 5 ms 毎に計測された x, y, z 軸の加速度, 角速度, 姿勢角が記録される.

Fig.9. アクリル板上のセルト

3.4 鉛直加速度成分 aZ の導出

BWT901の測定によって得られる姿勢角は、机に固定さ れた O-XYZ 座標系とセルトに固定された O-xyz 座標系と の間の ZYX オイラー角 (ϕ , θ , ψ) である. したがっ て BWT901の測定によって得られたセルト固定 O-xyz 座 標系における加速度 $n = (ax, ay, az)^T$ から机回転座標 O-x'y'z' 座標系 (O-XYZ から Z 軸周りに ψ だけ回転した 座標系) における加速度成分 $n' = (ax', ay', az')^T$ は次の 式によって求めることができる.

$$n' = \begin{pmatrix} ax' \\ ay' \\ az' \end{pmatrix} = R_y^T(\theta) R_x^T(\phi) \begin{pmatrix} ax \\ ay \\ az \end{pmatrix}$$
(1)

$$= \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} ax \\ ay \\ az \end{pmatrix} (2)$$

$$= \begin{pmatrix} axcos\theta + aysin\thetasin\phi + azsin\thetacos\phi \\ aycos\phi - azsin\phi \\ -axsin\theta + aycos\thetasin\phi + azcos\thetacos\phi \end{pmatrix}$$
(3)

机回転座標系 O-x'y'z'の z'軸は机固定座標系 O-XYZ の Z 軸と同じであるから,自発的跳躍を測定するためには机 面に垂直な方向の加速度成分 az' (= aZ) を算出すれば よい、すなわち、

$$aZ = az' = -axsin\theta + aycos\thetasin\phi + azcos\thetacos\phi \qquad (4)$$

を用いればよい. セルトが跳躍すると自由落下状態になる ので、aZ = 0となる.

Fig.10から Fig.13に上面楕円率 b/aを変えた場合の加速 度 aZの時間変動を示す.いずれも重り径 Φ = 10mm,重 り ねじれ角 ζ = 15°の条件における測定結果である. Fig.10および Fig.11のセルトは両者とも上面の楕円率 b/a= 0.5のサンプルである.Fig.12のセルトは上面の楕円率 b/a = 0.4, Fig.13のセルトは上面の楕円率 b/a = 0.25のサ ンプルであり,Fig.11と Fig.12に比べて上面の楕円率が小 さい.

Fig.10. 加速度 *aZ* の時間変化. D3(40-20-10) Φ = 10, ζ = 15°, *b/a* = 0.5

Fig.11. 加速度 *aZ* の時間変化. B2.5(50-25-10) Φ = 10, ζ = 15°, *b*/*a* = 0.5

Fig.12. 加速度 aZ の時間変化. B3(50-20-10) $\Phi = 10$, $\zeta = 15^{\circ}$, b/a = 0.4

Fig.13. 加速度 *aZ* の時間変化. C4(15-20-10) Φ = 10, ζ = 15°, *b*/*a* = 0.25

4. 考察

Fig.10から Fig.13を見ると,最も楕円率の小さな Fig.13 では aZ ≒ 0 の箇所が見られる.これまでの実験により楕 円率が小さいほど,強反転方向からの反転力が強くなるこ とがわかっている^[5].この実験結果から,反転力が強いセ ルトの方が自発的跳躍を生じやすいことが分かる.サンプ リング間隔 5 ms では自発的跳躍の兆候が見られるが,明 確に跳躍している箇所は見出せなかった.1 mm 程度の跳 躍なら 5 ms のサンプリングでも観測可能なはずであるか ら,跳躍していたとしても0.1mm 程度の僅かな跳躍であ ると推定できる.

セルトはロール振動とピッチ振動が不安定化したときに ガタガタと音を発する.この音がラトル(ガラガラ)バッ クという名の由来であるが,この音はセルトがジャンプし た後に机に衝突するときの衝突音だと考えられてきた^[6].

しかし我々のハイスピードカメラによる観測や,今回の慣 性計測装置による観測においても明確な跳躍現象は観測さ れなかった.全く跳躍していない場合の方が多いが,それ でもガタガタ音を発していることから,この音は跳躍の落 下時に机面に衝突する音ではないことが推測できる.

この BWT901はサンプリング間隔 5 ms が最小であるの で, 自発的跳躍を観測するためには, より高性能のセンサ を導入するか, より高い跳躍をする条件を探索する必要が ある. また本解析では, ロール, ピッチ, 並びにスピンに よる加速度成分が重力加速度に比べて十分小さいことを仮 定している. 今後は, ロール, ピッチ, 並びにスピンによ る加速度成分を考慮した解析を進めることも必要である.

5. まとめ

今回, 我々は慣性計測装置 BWT901を利用して机上面 に垂直な加速度成分 aZ の時間変化を観測し, 半楕円体型 セルトの自発的跳躍現象の検出を試みた. その結果, 自発 的跳躍現象の兆候は観測できたが, 明確な跳躍を捉えるに は至らなかった. 今後は明確な跳躍現象を観測できるよう に改善しなければならない.

文 献

- M. Batista, "Self-induced jumping of a rigid body of revolution on a smooth horizontal surface," Int. J. Non-linear Mechanics, Vol.43, pp.26–35, 2008.
- [2] J. Walker, "The mysterious "rattleback": a stone that spins in one direction and then reverses," Scientific American, pp.172-184, Oct. 1979.
- [3] G. T. Walker, "On a Curious Dynamical Property of Celts," Proceedings of the Cambridge Philosophical Society, vol.8, pt.5 (1895) pp.305–306.
- [4] H. Moffatt and T. Tokieda, "Celt Reversals: A Prototype of Chiral Dynamics," Proc. Roy. Soc. Edinburgh Sect. A, 2008, vol.138, no.2, pp.361–368.
- [5] 鬼追,半楕円体型セルトの主曲率とスピン反転回数に 関する実験的特性,可視化情報学会論文集,Vol.40, No. 3, pp. 1-8, 2020年3月.
- [6] 小川陽弘, 大島裕子, セルトの研究, 可視化情報, Vol.19, No.74, pp.15-20, 1999.