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Abstract
　The Digital Cinema Initiative (DCI) in the U.S. has standardized a system for digital cinema 
in 2005, which digitally processes movies from production to distribution/screening. In the DCI 
standard, the required number of quantization bits is determined by applying the Barten’s model 
as a visual model for luminance signals only. However, since most of the actual movies are in color, 
it lacks sufficient theoretical basis. In this study, we formulate the problem of applying various 
transformations corresponding to luminance, density, and gamma-corrected values in the discretized 
domain to the CIE XYZ color space. By using the asymptotic expansion method in the continuous-
valued domain to these respective values, we compare the required quantization accuracy with that 
obtained by the corresponding analysis in discretized domain. The results show that the required 
number of quantization bits obtained by the analysis in the discretized domain is consistent 
with the results of computer simulations and the approximations obtained in the continuous-
valued domain for the cases of luminance (14 bits), density (12 bits), and gamma-corrected value 
quantization (11 bits), respectively. The required accuracy of conventional TV signals, which have 
a smaller signal range than that of digital cinema, is also investigated, and its validity is confirmed 
by the simulation. The proposed analysis method makes it possible to obtain the required number of 
quantization bits without time-consuming computer simulations.

Key Words: �digital cinema, digital TV, required number of bits, color difference, XYZ signal, CIE 
1976 L*a*b*

1. INTRODUCTION

In recent years, there has been rapid progress 
in improving the quality of imaging systems, such 
as digital cinema [1],[2] that can achieve quality 
exceeding HDTV for moving images, and archiving 
systems for art and natural history images [3] for 
still images. There are several evaluation measures 
to determine the image quality in such high-quality 
imaging systems, including resolution, frequency 
transfer characteristics, and SNR [4]. Among them, 
one of the most important measures, regardless 
of whether the system is for video or still image 

system, is the required quantization accuracy of the 
image signal. Various studies have been targeted 
for the problem of quantization accuracy, but there 
are many obstacles such as the need for a huge 
amount of computer simulations to obtain useful 
design values. Therefore, if an analytical method 
that formulates the required quantization accuracy 
based on some visual model is available, then it 
is expected to contribute to the simple design of 
imaging systems for various applications.

The color space of the digital cinema standard 
specified by the Digital Cinema Initiative (DCI) 
in the U.S. is capable of supporting future display 
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devices with a wide color gamut by inputting and 
storing images by the form of CIE XYZ signals 
[5],[6]. Therefore, it is desirable to study the required 
quantization accuracy for CIE XYZ signals. The 
required number of quantization bits for color 
signals is determined so that quantized step changes 
do not make any artifacts invisible in the continuous 
signals before quantization [7]-[10]. This is similar 
to the method of obtaining the required number of 
quantization bits for monochrome images based on 
luminance signal [11]-[17].

Although there is a controversy on the evaluation 
formula for color difference, we will focus on the 
CIE 1976 L*a*b* color difference, which is widely 
used and recommended by the CIE. Our previous 
study [8] have analyzed the required quantization 
accuracy by approximating the quantization error 
as a continuous function under the assumption that 
the quantization step size is sufficiently small, but it 
cannot be applied for gamma values smaller than 1 
when the gamma-corrected value is used, and also 
it is impossible to identify the sample points that 
give maximum color difference. In this paper, we 
make use of the same color difference analysis as 
the previous one in the discretized region to derive 
the exact solution, and compare it with the results 
obtained by the approximate solution.

　In section 2, we show the color difference 
formula and its variable transformations, and obtain 
the quantization step size from the analytical model 
of color difference. Section 3 shows the behavior of 
the transform function for a system with a relatively 
wide signal range (i.e., the minimum luminance 
value is extremely small), such as digital cinema. In 
Section 4, the behavior of the transform function is 
shown for a system such as digital TV, which has 
a narrower dynamic range than the digital cinema. 
In section 5, we derive points where the transform 
functions simultaneously reach their maximum color 
difference. In section 6, numerical examples of the 
theoretical values are presented and their validity 
is verified by computer simulations. Section 7 gives 
conclusions and future work.

2. �COLOR DIFFERENCE FORMULA AND 
ITS VARIABLE TRANSFORMATION
In the following discussions, x, y, and z are 

normalized signals of X, Y, and Z with their 
white points of the maximum values X0, Y0, and 
Z0, respectively, and let x(m1), y(m2), and z(m3) be 
their sample points quantized with M bits. Here, 
m1, m2, and m3 are integers that exist in the range 
determined by the number of quantization bits:

�
(1)

2.1 �QUANTIZATION FOR VARIOUS TRANSFORM 
The minimum values of the luminance x, y, and 

z are set to ρ. The quantized values x(m1), y(m2), 
and z(m3) for the luminance, density, and gamma-
corrected transform are considered in turn below 
when these values are all uniformly quantized 
with M bits. Here, m is used as an integer value 
to represent any of m1 , m2 , and m3 in Eq. (1). 
Assuming that the uniform quantization functions 
for luminance, density, and gamma-corrected value 
quantization are Va(m), Vb(m), and Vc(m), and that 
these quantization step sizes are Δa, Δb, and Δc, 
respectively, they are represented as follows:

�
(2)

� (3)
�

(4)

Then the quantized values of x(m1), y(m2), and 
z(m3) are obtained by applying above transform 
functions to m1, m2, and m3 [8].

2.2 �COLOR DIFFERENCE BY QUANTIZATION
To evaluate the color difference caused by 

quantization in the CIE 1976 L*a*b* color space, 
we make use of the following function f( ) of a 
luminance value  [8]:

� (5)

� (6)
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The color difference caused by quantization is 
evaluated between adjacent quantization samples. 
Therefore, if we consider a sample point at m1, m2, 
and m3 as the reference for quantization values, then 
the adjacent quantization values are those that have 
changed by +1 or -1 from at least one coordinate 
value. Among those 26 adjacent samples, the color 
difference due to quantization has a maximum value 
when the change is, from the results of analysis 
in the continuous domain, either m1 → m1-1, m2 → 
m2+1, and m → m3-1, or m1 → m1+1, m2 → m2-1, and 
m3 → m3+1. We prove that the results obtained from 
the analysis in the continuous domain also hold in 
the discrete domain.

If we denote the sample points where at least one 
of m1, m2, and m3 changes by Δm1, Δm2, and Δm3 
(where Δm1, Δm2, and Δm3 are either -1, 0, or +1, 
except when they are all zero at the same time),
the 26 adjacent sample points can be represented by 
Figure 1 in 3-D m1m2m3 space. Here, the neighboring 
sample points are categorized to three sets in terms 
of the number of differences in the coordinate values 
where groups 1 to 3 correspond to all-axis-value 
change (8 samples), 2-axis-value change (12 samples), 
1-axis-value change (6 samples), respectively, and the 
samples are indexed within each group. For example, 
the sample point represented by (2-7) is the seventh 
point in group 2. Table 1 summarizes Δm1, Δm2 , 
and Δm3 values for each sample point.

Table 1　�Δm1, Δm2, and Δm3 values for each sample point.

The color difference in CIE 1976 L*a*b* color 
space between the reference and the adjacent sample 
points is denoted by ΔE(m1, m2, m3). The function V 
represents one of Va, Vb, or Vc.

�
(7)

where �A = 1162, B = 5002, C = 2002. If we define  (m) as
	�  (8)

then  can be shown as

� (9)
In addition, m1, m2, and m3 are transformed into 

m1 ,̓ m2 ,̓ and m3ʼ according to Δm1, Δm2, and Δm3 
values.

� (10)

Then, miʼ varies from 1 to 2M -1. The function  
(m1 )̓ can be represented as

� (11)
where U(m) is defined by

	(12)

Similarly,  (m2 )̓ and  (m3 )̓ can be represented as

(13)
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Therefore, by putting e{U(m1 )̓, U(m2 )̓, U(m3 )̓} 
for {ΔE(m1, m2 , m3)}2 , which is the square of the 
color difference of the reference sample against its 
26 adjacent samples, we can analyze their functional 
behavior. The analysis is applied to 26 sample points 
denoted (1-1) to (3-6) shown in Figure 1. It can be 
seen that the function h is isometrically largest if 
the following condition holds.

� (14) 

The function e{U(m1 )̓, U(m2 )̓, U(m3 )̓} also 
monotonically increases, and it has a maximum value 
at the upper bound.

3. BEHAVIOR OF U(m) FOR ρ < θ

3.1 CLASSIFICATION OF U(m)̓ s FORM
In the case of quantization of signals with 

various transforms, if we let mθ be the value of m 
corresponding to θ that determines the classification 
of the function f( ), then mθ is generally a real 
number. The form of U(m) differs at three regions 
on the line of m shown in Figure 2 as follows.

�

(15)

The minimum and maximum values of U(m) 
in each region are denoted by min[U(m)] and 
max[U(m)], respectively, in the following discussion.

3.2 �BEHAVIOR FOR LUMINANCE QUANTIZATATION
If we let mθ

(L) be mθ for luminance quantization as
� (16)

then, U(m) is positive in the region of 1 ≤ m ≤ mθ
(L) :

 � (17)

� (18)
and it becomes larger than 0 by using the relation

� (19)

So that U(m) is positive in the region II. Finally, 
for mθ

(L)  + 2 ≤ m ≤ 2M -1, U(m) and its min/max 
values can be shown as

� (20)
� (21)

� (22)

As a result, U(m) is positive in the region III.
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3.3 �BEHAVIOR FOR DENSITY QUANTIZATATION
Let mθ(D) be mθ for density quantization as

� (23)
Then, U(m) and its min/max values in the region 

of 1 ≤ m ≤ mθ
(D)  can be shown as follows.

� (24)
� (25)

� (26)

As a result, U(m) is positive in the region I. Next, 
U(m) in the region of m = mθ

(D)  +1 is

� (27)

We can see that U(m) in the region II is positive 
by applying

� (28)

Finally, U(m) and its min/max values in the 
region of mθ

(D)  + 2 ≤ m ≤ 2M -1 are given as follows.
� (29)

� (30)

� (31)
As a result, U(m) is positive in the region III.

3.4 �BEHAVIOR FOR GAMMA-CORRECTED 
VALUE QUANTIZATATION

Let mθ
(γ) be mθ for gamma-corrected value quantization as

� (32) 
Then, U(m) in the region of 1 ≤ m ≤ mθ

(γ)  is
� (33)

U(m) is constant for γ = 1 (corresponding luminance 
quantization), and is monotonically increasing function 
for γ > 1, while monotonically decreasing and positive 
function for 0 < γ < 1. The constant values of U(m) for 
γ = 1 are given by

� (34)

� (35)

and min/max values of U(m) for 0 < γ < 1 are given by

� (36)

� (37)

Next, U(m) in the region of m = mθ
(γ)  +1 is

� (38)
It can be seen that U(m) is positive by applying 

the relation

� (39)

Finally, U(m) in the region of mθ
(γ)  + 2 ≤ m ≤ 2M -1 is

�
(40)

As it is difficult to clarify the behavior of U(m) 
analytically, we consider the next functions h(m) and 
g(m) instead of U(m).

�
(41)

�
(42)

It is not difficult to see that the function g(m) 
determines the sign of d{h(m)}/dm. If mc is zero for 
g(m), then the mc gives a maximum value of h(m), 
and mc values depend on γ as shown in Figure 3. 
The behavior of U(m) for 0 < γ < 1 and 3 ≤ γ is 
shown in the same figure. Table 2 summarizes U(m) 
and its min/max values in the region of mθ

(γ)  + 2 
≤ m ≤ 2M -1.

The values of U(m) in Table 2 at m = mθ
(γ)  + 

2, 2M -1, mc , mc  +1, and mc  + 2 are respectively 
given by

� (43)

� (44)

� (45)

� (46)

� (47) 
As a result, it can be seen that U(m) in the 

region III is positive because both U( mθ
(γ)  + 2) and 

U(2M -1), which give a minimum value of U(m), are 
positive.
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4. BEHAVIOR OF U(m) FOR θ ≤ ρ

In the previous section, we investigated the 
behavior of the function U(m) for relatively wide rage 
signal (i.e., ρ < θ). This section studies the behavior 
of U(m) for relatively narrow range signal (i.e., θ ≤ ρ).

4.1 FUNCTIONAL FORM OF U(m) 
The functional form of U(m) for θ ≤ ρ is given 

as follows similar to the region III of θ ≤ ρ in 
Figure 2.

� (48)

4.2 �BEHAVIOR FOR LUMINANCE QUANTIZATATION
When the function V in Eq. (48) is replaced by Va 

in Eq. (2), the form of U(m) is
� (49)

Then, U(m) is monotonically decreasing function 
with respect to m, and it has a minimum value at m 
= 2M -1, and has a maximum value at m = 1, so that 
they are given as follows.

� (50)
� (51)

As a result, U(m) is positive in this case.

4.3 �BEHAVIOR FOR DENSITY QUANTIZATATION
When the function V in Eq. (48) is replaced by Vb 

in Eq. (3), the form of U(m) is
� (52)
Then, U(m) is monotonically increasing function 

with respect to m, and it has a minimum value at m 
= 1, and has a maximum value at m = 2M -1, so that 
they are given as follows.

� (53)
� (54)
As a result, U(m) is positive in this case.

4.4 �BEHAVIOR FOR GAMMA-CORRECTED 
VALUE QUANTIZATATION

For the gamma-corrected value quantization, the 

Table 2　Behavior of U(m) for mθ
(γ)  + 2 ≤ m ≤ 2M -1.

(*) mmax and mmin give maximum and minimum 
values of U(m), respectively. γθ = 3(θ/ρ){2+(θ/ρ)}, 
γ1 = 3(1/ρ){2+(1/ρ)} [8].
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form of U(m) is
� (55)

as the function V in Eq. (48) is replaced by Vc in Eq. 
(4). The behavior of U(m) is as described in 3. except 
the domain is 1 ≤ m ≤ 2M -1 instead of mθ

(γ)  + 2 ≤ 
m ≤ 2M -1, so that the min/max values are different. 
The γ-dependency of mc, which gives a maximum 
value of h(m) in eq. (41) is shown in Figure 4. U(m) 
and its min/max values for θ ≤ ρ are summarized 
in Table 3.

It is obvious that U(m) has its maximum value of 
U( mc  +1) or U( mc  + 2) for h( mc  +1) > h( mc ), 
and U( mc ) or U( mc  +1) for h( mc  +1) < h( mc ). 
The minimum value of U(m) at m = 1 and 2M -1 
is obtained as follows, and these values are both 
positive.

� (56)

� (57)

As a result, U(m) is positive in this case.

5. MAXIMUM COLOR DIFFERENCE

5.1 �REQUIRED NUMBER OF QUANTIZATION 
BITS

The previous discussion proves that U(m) is 
positive for all luminance, density, and gamma-
corrected value quantization against any values 
within the range specified by Eq. (1) for both 
conditions ρ < θ and θ ≤ ρ. Therefore, it can 
be seen that e{U(m1 )̓, U(m2 )̓, U(m3 )̓}, the square of 
the color difference, gives the maximum value for 
coordinate changes of m1 → m1-1, m2 → m2+1, and 
m3 → m3-1, together with m1 → m1+1, m2 → m2-
1, and m3 → m3+1. In addition, the square of this 
color difference takes its maximum value at the 
point where U(m1 )̓ , U(m2 )̓ , and U(m3 )̓ have 
simultaneously their maximum values because 
the partial differentiations with respect to U(m1 )̓, 
U(m2 )̓, and U(m3 )̓ are all positive.

　In this section, we derive the point where 
U(m1), U(m2), and U(m3) simultaneously reach their 
maximum in each region of m1m2m3 space in the 
cases of m1 → m1-1, m2 → m2+1, and m3 → m3-1, and 
calculate e{U(m1 )̓, U(m2 )̓, U(m3 )̓} at that point. The 

maximum value of e{U(m1 )̓, U(m2 )̓, U(m3 )̓} in each 
region gives the maximum color difference of the 
whole, and the required number of quantization bits 
is determined from the condition that the maximum 
color difference does not exceed 1.

5.2 �DOMAIN OF m1, m2, m3 AND ITS CLASSIFICATION
Let each quantization step size be given by
� (58)
Then, the relation between mi  ̓and mi (i = 1, 2, 3) is
� (59)
The ranges of m1, m2, and m3 have been defined 

in Eq. (1). Since we only need to find the color 
difference by limiting the change of quantization 
points in the m1m2m3 space to either 0 or ±1, the set 
of quantized samples to be considered contains 3 × 
3 × 3 = 27 points. Figure 5 shows the domain of m1, 
m2, and m3 in the 3-D space for θ ≤ ρ, where the 
quantization points are indicated by the numbers 
enclosed in square symbols. Table 4 shows the 
domain of m1, m2, and m3 in each region.

5.3 �QUANTIZED POINTS FOR COLOR 
DIFFERENCE COMPUTATION

The candidate points that possibly give the 
maximum color difference can be determined in 
3-D m1m2m3 space for ρ < θ. Figure 6 and 7 shows 
these points for luminance and density quantization, 
respectively. Note that m1 and m3 are identical to m 
itself, while m2 is subtracted by 1 from m according 
to Eq. (59). In the case of gamma-corrected value 

Table 3　Behavior of U(m) for θ ≤ ρ

(*) mmax and mmin give maximum and minimum 
values of U(m), respectively. γ1 = 3(1/ρ){2+(1/ρ)} [7].
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quantization, these candidate points are shown in 
Figure 8 and 9 as examples for cases of 0 < γ < 1 and 
γ1 < γ, respectively. The points for other conditions 
of gamma values are readily found by examining the 
behavior of the color difference function shown in 
Table 2.

The points that give the maximum color 
difference with θ ≤ ρ for various quantization 
are shown in 3-D m1m2m3 space in Figure 10. 
In this case, color differences for luminance and 
density quantization are maximized at m = 1 and 
m = 2M -1, respectively. The color difference for 
gamma-corrected value quantization is determined 
according to its behavior shown in Table 3. 

6. NUMERICAL EXAMPLES

6.1 CONSTANTS
We use ρ = 10 -3.2 and 10 -2.0 , which are typical 

for cinema film screens [3] and television monitors 
[4], respectively. As already shown in Eq. (6), θ 
= (24/116)3 ≈ 0.00885645 and  = (116/24)2 ≈ 
23.36111111. Thus, the cases of ρ = 10-3.2 and ρ = 
10-2.0 corresponds to ρ < θ as discussed in 3. and 

θ ≤ ρ as discussed in 4., respectively.
The following values of mθ

(L), mθ
(D), and mθ

(γ) are 
used for luminance, density, and gamma-corrected 
value quantization. Note that these constants are not 
defined when the minimum value of luminance is ρ 
= 10-2.0, since θ ≤ ρ in this case.

� (60)

�

(61)

�
(62)

γθ and γ1 are given as follows

�

(63)
�

(64)

6.2 REQUIRED NUMBER OF BITS
In numerical evaluations, the required number of 

Table 4　Domain of m1, m2, and m3 in each region for ρ < θ.
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quantization bits is obtained by calculating the color 
difference ΔE and applying the condition that it 
does not exceed 1. Substituting M = 14 into Eq. (61)
for luminance quantization, mθ

(L) ≈ 134.843 and mθ
(L)  

= 135 are obtained. Figure 11 (a) shows the result 
of ΔE for ρ = 10-3.2. The point 5 in the figure gives 
maximum color difference ΔEmax = 0.514562 at (m1, 
m2, m3) = (134, 133, 134).

In the case of density quantization, by substituting 
M = 12 into Eq. (62), mθ

(D) ≈ 1468.13 and mθ
(D)  = 

1468 are obtained. Figure 11 (b) shows the result of 
ΔE for ρ = 10-3.2. The point 27 in the figure gives Δ
Emax = 0.649522 at (m1, m2, m3) = (4095, 4094, 4095).

I n  the case of  gamma-corrected va lue 
quantization, mθ

(γ) and mθ
(γ)  depend on both γ and 

M. Figure 11 (c) shows the result of ΔE for ρ = 10-

3.2 and γ = 2.6. The point 27 in the figure gives Δ
Emax = 0.558289 at (m1, m2, m3) = (325, 324, 325). On 
the other hand, Figure 11 (d) shows the result of ΔE 
for ρ = 10-3.2 and γ = 2.8. The point 46 in the figure 
gives ΔEmax = 0.53105 at (m1, m2 , m3) = (479, 478, 
479).

Table 5 shows maximum color differences between 
the quantized points and their adjacent points 
calculated from the computer simulation only for 
critical situations that the maximum color difference 
changes from greater than 1 to less than 1. It is 
confirmed from the simulation that the maximum 
color difference for luminance quantization is obtained 
at m = 1 in Eq. (17), while that for density quantization 
is obtained at m = 2M -1 in Eq. (31) In addition, the 
maximum color difference for gamma-corrected value 
quantization is determined by the value of m in Table 
2 which depends on γ as described in 3.4. These 
results show that the theoretical values agree with the 
computer-simulated values, and therefore the validity 
of the theory has been verified.
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7. CONCLUTION

The proposed analysis method for calculating 
color differences in the discretized region has the 
following advantages over that in the continuous 
approximation.
・	�The analysis can be applied even when the 

quantization step size is not sufficiently small.
・	�It is possible to analyze the case of 0 < γ < 1 

in gamma-corrected value quantization, which 
cannot be handled by the continuous approximation 
analysis.

・	�It is possible to identify the exact quantized 
sample coordinates that give the maximum color 
difference.
On the other hand, the analysis of the 

approximations for continuous signals has the 
advantage that the required number of quantization 
bits can be obtained by calculating only one single 
equation.

Future work includes confirming the effectiveness 
of this analysis method in more appropriate color 
difference formulas and color spaces, and studying 
contrast and gamut mapping algorithms that take 
into account the three-dimensional distribution of 
color differences due to quantization.

12

14
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Table 5　Discrete sample coordinates and maximum 
color difference values where ΔEmax changes from greater 
than 1 to less than 1.（In numerical evaluations）
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