原点立上り型復元力特性を有するブレースを設置した 鋼構造架構の複数回地震発生時の地震応答

山西 央朗*・山田 裕也**・清水 斉*・小松 真吾***・小畑 寛行****

(平成30年11月1日受付)

MULTI SEISMIC RESPONSE OF STEEL STRUCTURE WITH BRACE HAVING BUILD-UP-FROM ORIGIN-POINT TYPE

Teruaki YAMANISHI, Yu-ya YAMADA, Hitoshi SIMIZU, Shingo KOMATSU and Hiroyuki KOBATA

(Received Nov. 1, 2018)

Abstract

The authors are conducting research to clarify the seismic performance of the frame with R-brace. In previous studies research was conducted experiments of R-brace and numerical analysis of onestory-one-bay frame. In this paper numerical analysis with multi-story-multi-bay is carried out and performance of R-brace is discuss. As a result. The performance of R-brace is restrained residual deformation when the burden is large. Furthermore, it is possible to decreased the increase of residual deformation when even if multi-earthquakes occur, and to restrain occurrence of residual deformation.

Key Words: build up from origin point type, brace, residual deformation reduction, seismic analysis

1. 序 論

建築構造物の地震時安定性,並びに性能評価を行う場合 においては,紡錘型の復元力特性を付与することが単純か つ取り扱い易い。しかし一方で,当該挙動は,変位と抵抗 力との間に位相差が生まれ残留変形を生じる可能性がある。 一定値以上となると,二次部材の機能不全や建物使用者の 不快感が報告され,地震後,構造物の継続使用が困難なも のとなる。また,近年には2016年に発生した熊本大地震の ように,極めて稀に起こる地震が複数回発生しており,前 震に耐えた構造物が本震で倒壊する事例が挙げられている。 このように構造物の耐震安全性を確保するためには,残留 変形の問題に対して考える必要がある。残留変形の問題に 対しては,"セルフセンタリング性能"と呼ばれる原点指向 型の復元力特性が効果的とされ既往の研究によって明らか とされているが^{1,2)},工法の複雑さ・汎用性に難がある。著 者らは、比較的簡単に使用できるブレースにセルフセンタ リング性能の期待できる復元力特性を付与させたもの(以 後 R-brace と記す)を提案しており、既往の研究よりラー メン架構に R-brace を X 型配置することにより、原点指向 型の復元力特性を示し、(図1を参照)残留変形低減効果を

^{*} 広島工業大学工学部建築工学科

^{**} 広島工業大学工学系研究科建設工学専攻

^{***} 東京工業大学

^{****} 大旗連合建築設計株式会社構造設計部

表1 部材リスト

層	木	È	梁		
	C1,C2	C3	G1	G2	
8			$\text{H-400} \times 200 \times 9 \times 16$	$\text{H-400} \times 200 \times 9 \times 12$	
7	\Box -400 × 400 × 19	\Box -400 × 400 × 16		$11400 \times 200 \times 12 \times 22$	
6	*		H-450 × 250 × 9 × 10	H-400 × 200 × 12 × 22	
5					
4	\Box -400 × 400 × 22	\Box -400 × 400 × 19	$\text{H-}500 \times 200 \times 12 \times 22$	$\text{H-}500 \times 200 \times 12 \times 19$	
3	*				
2		□ 400 × 400 × 99		H COO × 200 × 19 × 29	
1	$-400 \times 400 \times 25$	\square -400 × 400 × 22	H-000 × 200 × 12 × 25	$H-600 \times 200 \times 12 \times 22$	

有することを明らかとしている^{3,4)}。

本論では、中層鋼構造物を対象として数値解析を行い、 複数回の地震発生時における R-brace 付き架構の地震応答 性状を明らかとすることを目的とする。また併せて、一般 的に使用される座屈拘束ブレース(以後 BRB と記す)を設 置した架構の解析を行い、比較・検討を行い、R-braceの性 能について議論する。

2. 数值解析概要

2.1 解析モデル⁵⁾

図2に解析モデルを表1に解析モデルの部材リストを示 す。解析モデルは、一般的な中層事務所ビルを想定し、階 高が1階4.5m、2~8階4m、スパン長6mの8層3ス パンの立体架構である。解析モデルの条件を以下に示す。

- 設計用地震力は地域係数 Z=1.0,設計用一次固有周期 T=0.03H (H:建物の高さ),地震種別は第2種地盤, 標準せん断力係数 C₀=0.2とし,A_i分布に基づいて仮 定する。
- 2. 本解析モデルの部材重量を除いた床の固定荷重は一般 層を4,470 N/mm²,最上階を6,590 N/mm²とする。 積載荷重として,一般層を事務所,最上階を屋上と仮

定する。

- 3. 各層の床には剛床を仮定する。
- 4. 柱,梁,ブレースの鋼材種は、それぞれ BCP325, SN490B, SNR490Bとし、ヤング係数 E=205,000 N/ mm²,降伏応力度は実勢値を加味して公称値の1.1倍で ある σ_c=358 N/mm²とする。
- 5. 各層の梁の全塑性モーメントの総和 ΣM_{pb} に対する軸 力を考慮した柱の全塑性モーメントの総和 ΣM_{pc} の比 $\Sigma M_{pc} / \Sigma M_{pb}$ が1.5を上回るように設定している。
- 図3に架構の剛性の分布を示す。各層の剛性は直線的 な分布となっている。

2.2 解析対象

2.2.1 ブレース

対象とするブレースは、R-brace,BRBの2種類とし、単 軸バネによってモデル化を行う。BRBには完全弾塑性型の 復元力特性を、R-braceには原点立上り型を再現した bi-linear型の復元力特性を設定する。またブレースの配置 は図4に示すように、各層の外側中央構面に配置しBRBは 片流れ方(Z型)に、R-braceはX型に配置する。表2にブ

層	A _b (mm ²)			K ₀ (kN/mm)			T _{byi} (kN)		
	$K_b/K_{sys}=0.2$	$K_b/K_{sys}=0.4$	$K_b/K_{sys}=0.6$	$K_b/K_{sys}\!=\!0.2$	$K_b/K_{sys}=0.4$	$K_b/K_{sys}=0.6$	$K_b/K_{sys}=0.2$	$K_b/K_{sys}=0.4$	$K_b/K_{sys}=0.6$
8	302.4	786.3	1814.4	8.6	22.4	51.6	108.1	281.1	648.7
7	345.4	898.2	2072.7	9.8	25.5	58.9	123.5	321.1	741.0
6	384.5	999.8	2307.2	10.9	28.4	65.6	137.5	357.4	824.8
5	438.0	1138.8	2628.1	12.5	32.4	74.7	156.6	407.1	939.5
4	452.0	1175.3	2712.3	12.9	33.4	77.1	161.6	420.2	969.6
3	506.6	1317.2	3039.6	14.4	37.4	86.4	181.1	470.9	1086.7
2	594.7	1546.3	3568.4	16.9	44.0	101.4	212.6	552.8	1275.7
1	725.1	1885.3	4350.8	19.8	51.5	118.9	259.2	674.0	1555.4

表3 固有周期

エデル	固有周期(s)			
2712	1次	2次		
ラーメン架構	1.368	0.476		
$K_b/K_{sys} = 0.2$	1.235	0.432		
$K_b/K_{sys} = 0.4$	1.113	0.386		
$K_b/K_{sys} = 0.6$	0.987	0.331		

レースの断面リストを示す。架構の剛性に対しブレースが 占める剛性の割合を、ブレース系水平力負担率 K_b/K_{sys} (式 (1)より算定)とし K_b/K_{sys} が0.2, 0.4, 0.6となるように ブレース断面積 A_b を決定し式(2),(3)より降伏耐力 T_{by} , 弾性剛性 K_{b0} を入力する。

$$K_b / K_{sys} = \frac{K_b}{K_b + K_f} \tag{1}$$

$$T_{by} = A_b \cdot \sigma_y \tag{2}$$

$$K_b = \frac{E \cdot A_b}{l_b} \tag{3}$$

2.2.2 入力加速度

図5に速度応答スペクトルを示す。入力加速度は、標準 3波(el centro, Taft, Hachinohe)を使用し,各観測波 のNS成分をX軸方向にのみ入力する。また図6に示すよ うに、観測波を連続させたものも併せて入力する。更に, R-braceとBRBの性能の違いを明確にするため、最大速度 が75 kine, 100 kineとなるように基準化を行う。固有周 期は表3に示すように、およそ0.9~1.2の範囲に分布して

2.3 解析条件

解析条件は以下のとおりとする。

- 数値解析には SNAP.ver6.0(任意形状立体フレーム弾 塑性解析ソフト)を使用する。
- 2.数値積分の方法は Newmark-β 法 (β=0.25の平均加速 度法)とする。
- 3. 減衰は瞬間剛性比例型で減衰定数 h=0.02とする。
- 4. 地震終了時の残留変形を得るため、1波入力では地震 後自由振動が十分に小さくなる100s迄、2波入力の 場合には、150s迄解析を行う。

3. 数値解析結果と考察

3.1 ラーメン架構の性能

図7に50 kineに基準化した標準3波を1回入力した際の,正負方向の最大応答,残留変形角の分布を,図8に Taft 波を連続させた地震波を75 kine, 100 kineに基準化し

た際の正負方向の最大応答、残留変形角の分布を示す。図 7より架構のみの性能として、架構の強度を大きく設計し てしまったため el centro, hachinohe では共に, 架構は弾 性範囲であり最大応答は小さく、残留変形は生じていない。 しかし Taft の場合には中層付近で最大応答は 1/100 rad 以 上となり,残留変形が生じている。更に図8より二回連続 して入力した場合には, 75 kine, 100 kine 共に大きな変形

を生じており 1/200 rad 以上の残留変形を生じている。よっ て Taft 波の結果を例として示し R-brace の性能について議 論する。

3.2 地震動入力が一波の場合

図9に4層の層せん断力-層間変形角関係を示す。先ず, K_b/K_{sys} による影響として K_b/K_{sys} の増加は、保有水平耐力

図10 正負方向の最大応答,残留変形角の分布

の増加に繋がるため同じ入力波であっても最大層間変形角 は低減する傾向がある。また履歴形状はブレースの履歴特 性の支配率が大きくなるため R-brace では原点指向型復元 力特性が,発現しやすくなる。次に図9,10より R-brace は前述のとおり K_b/K_{sys} が増加するにつれ残留変形は低減し ていく傾向がある。しかし K_b/K_{sys} が小さく,紡錘型の履歴 形状に近い場合にあっては,R-brace を設置しても,最大応 答が 1/50 rad を超過する場合には大きな残留変形が生じる。

一方,BRB は紡錘型の履歴形状を示すものの,最大応答 は R-brace に比較して小さくなるため,残留変形は R-brace と同程度に抑えられる層もある。但し,R-brace と同程度の 最大応答が生じた場合においては,残留変形は大きくなる 傾向がある。これらは,紡錘型復元力特性がエネルギー吸 収効率が良い一方で,残留変形が生じやすいと言う基本的 な性状に一致する。

3.3 地震動入力が二波の場合

図11に正・負方向最大応答の増大率を,図12に残留変形 角の増大率を示す。先ず,図9,10より(a),(d)は前述 のように*K_b/K_{sys}が*小さく,履歴形状は紡錘型の復元力特性 に近い履歴を示す。よって R-brace, BRB は共に, 負方向 に移行していくため大きな残留変形を生じている。また図 11, 12に示すように最大応答, 残留変形の増大率は大きい。 しかし (b), (c), (e), (f) の場合において R-brace は, 残 留変形は増加しているものの,二波目の履歴形状が一波目 と重複した履歴形状を示すため最大応答, 残留変形の増加 率は共に小さい値を示している。一方 BRB は履歴が負方向 に移行しており残留変形は増加していく傾向にある。特に (e) については, R-brace と比べ BRB の残留変形の増加率 は大きく,大きな残留変形が生じている。

このように*K_b/K_{ss}*が大きい (e), (f) のようにブレース の履歴形状の支配率が大きい場合,特に R-brace において は,残留変形が抑制できる傾向にある。従って R-braceの 本来の履歴形状である図1に示す原点指向型の復元力特性 が支配的となる履歴形状を示すように R-brace を配置する ことによって複数回の地震が発生した場合においても,残 留変形の発生を抑制することができ,BRB のように変位が 一方向に移行することを防ぐことが可能である。結果とし て残留変形の増加を抑制できると考えられる。

4. 結 論

- ブレースの履歴形状の支配率が大きい場合(K_b/K_{sys} = 0.4,0.6)においては、最大応答が1/50 radを超過す る場合であっても残留変形を抑制できる傾向にある。
- 1のように K_b/K_{sys} が大きい場合には、複数回の地震を 受けても、BRB のように一方向に移行することなく一 波目と重複した履歴を示すため、残留変形の増加率は 小さく、発生を抑制できる傾向にある。

文 献

- 池永昌容,長江拓也,中島正愛,吹田啓一郎:残留変 形低減をめざしたセルフセンタリング中脚の開発と載 荷実験,日本建築学会構造系論文集,第612号,pp. 223-230,2007.2
- 2) 池永昌容, 松宮智央, 倉田真宏, 中島正愛, 吹田啓一

郎:セルフセンタリング導入による鋼構造骨組の残留
変形低減効果,日本建築学会学術講演梗概集(北海道),pp.765-766,2004.8

- 3)石橋亮,山西央朗,田川浩,高松隆夫:原点立上り型 復元力特性を有するブレースの鋼構造物応答・残留変 形低減効果,日本建築学会大会学術講演梗概集(関 東),pp.1065-1066,2015.9
- 4)石橋亮,山西央朗,田川浩,高松隆夫:原点立上り型 復元力特性を有するブレースと制振ブレースを併用し た低層鋼構造物応答について、日本建築学会中国支部 研究報告集 日本建築学会中国支部 編,39巻,pp. 337-340,2016.3
- 5) 高松隆夫,玉井宏章,小松真吾,山西央朗:多層 NC ブレース架構の地震応答性状に関する研究,広島工業 大学紀要.研究編,51巻,pp.69-75,2017.2