原点立ち上がり型復元力特性を有するブレースを設置した 8 層 3 スパン立体架構の地震応答解析

山西 央朗*・山田 裕也*・清水 斉*

(平成29年11月1日受付)

SEISMIC RESPONSE ANALYSIS OF 8-STOY 3-BAY STEEL STRUCTURE WITH BRACE HAVING BUILD-UP-FROM ORIGIN-POINT-TYPE

Teruaki YAMANISHI, Yu-ya YAMADA and Hitoshi SIMIZU

(Received Nov. 1, 2017)

Abstract

The frame shows build up from origin point type and it can be decreased the response and residual deformation of the frame by placing R-brace in the X type. This paper shows performance of earthquake response to buildings with R-brace applied in each story of the 8 story 3 bay frame by the numerical analysis. This frame has same performance as the Buckling-restrained brace applied to usual structures.

Key Words: build up from origin point type, seismic analysis, multi-story-multi-bay

1. 序 論

構造物の耐震要素として、ブレースが効果的であること はよく知られており低層建築物から、高層建築物まで幅広 く使用されている。しかし近年の建築物の耐震設計におい ては、構造物の安全性以外にも建築物の機能性の向上が求 められており、地震後の残留変形による地震後の継続使用 が困難となる要因を解消するような、付加的技術がもとめ られている。著者らはセルフセンタリング性能が期待でき るブレースとして、原点立ち上がり型復元力特性を有する ブレース¹⁾(以後, R-braceと記す)を提案しておりラーメ ン架構に R-brace を X 型に配置することにより、原点を指 向するような復元力特性を示し(図1を参照)、スリップ現 象を生じない効率的なエネルギー消費により、架構の最大 応答・最小応答の低減、地震後の残留変形の低減効果を有 することを明らかとしている²⁾。

従来,中層・高層構造物に用いられる,座屈拘束ブレースは安全性・設計法の確立など実用化のために,さまざま

図1 R-brace を X 型に配置した際の復元力特性

な実験・研究^{3),4)} が行われているが R-brace のように,セル フセンタリング性能を期待できる復元力特性を付与させた ブレースの研究は少なく,特に多層構造物における効果を 検討する必要がある。

本研究では中層構造物を対象とし,R-braceをX型に配 置した架構とエネルギー消費効率が高く完全弾塑性型の復 元力特性を示す座屈拘束ブレースを適用した架構と比較す ることで,最大速度75 kine,100 kine における R-braceの 地震応答低減効果,地震後の残留変形低減効果を明らかと することを目的とする。

beam story shear force story drift angle

^{*} 広島工業大学工学部建築工学科

表1 部材リスト

R	柱		梁	
眉	C1, C2	C3	G1	G2
8			$\text{H-400} \times 200 \times 9 \times 16$	$\text{H-400} \times 200 \times 9 \times 12$
7	$\square -400 \times 400 \times 19$	□ -400 × 400 × 16	$\text{H-450} \times 250 \times 9 \times 16$	$\text{H-400} \times 200 \times 12 \times 22$
6				
5				
4	$\Box -400 \times 400 \times 22$	\Box -400 × 400 × 19	$\text{H-}500 \times 200 \times 12 \times 22$	$\text{H-}500 \times 200 \times 12 \times 19$
3				
2	$- \Box -400 \times 400 \times 25$	$\Box -400 \times 400 \times 22$	$\text{H-600} \times 200 \times 12 \times 25$	$\text{H-600} \times 200 \times 12 \times 22$
1				

4,000 000 4,000 4,000 4.000 4.000 4,000 G2 G2 G2 4.500 C3 C2 C2 C3 6,000 6,000 6,000 18,000 (a) 立面図 C3 G2 C2 G2 C2 G2 C3 G 6,0005 5 C2 G1 C1 G1 C1 G1 C2 18,000 6,000 33 5 C1 G1 C2 G1 C1 G1 C2

32,500

(b) 平面図 図2 解析モデル

表2 ブレース断面リスト

屋	$A_{bi} (\mathrm{mm}^2)$		EA_{bi}/l_{bi} (kN/mm)			
眉	$\beta = 0.2$	$\beta = 0.4$	$\beta = 0.6$	$\beta = 0.2$	$\beta = 0.4$	$\beta = 0.6$
8	242	629	1452	8.6	22.4	51.6
7	276	719	1658	9.8	25.5	58.9
6	308	800	1846	10.9	28.4	65.6
5	350	911	2102	12.5	32.4	74.7
4	362	940	2170	12.9	33.4	77.1
3	405	1054	2432	14.4	37.4	86.4
2	476	1237	2855	16.9	44.0	101.4
1	580	1508	3481	19.8	51.5	118.9

2. 数值解析概要

2.1 解析モデル⁵⁾

図2に解析モデルを表1に解析モデルの部材リストを示 す。解析モデルは、一般的な中層事務所ビルを想定し、階 高が1階4.5m, 2~8階4m, スパン長6mの8層3 スパンの立体架構である。解析モデルの条件を以下に示す。

- 1. 設計用地震力は地域係数 Z=1.0, 設計用一次固有周期 T=0.03H (H: 建物の高さ), 地震種別は第2種地盤, 標準せん断力係数 $C_0=0.2$ とし、 A_i 分布に基づいて仮 定する。
- 2. 本解析モデルの部材重量を除いた床の固定荷重は一般 層を 4,470 N/mm²,最上階を 6,590 N/mm² とする。 積載荷重として,一般層を事務所,最上階を屋上と仮 定する。
- 3. 各層の床には剛床を仮定する。
- 4. 柱, 梁, ブレースの鋼材種は, それぞれ BCP325, SN490B, SNR490B とし、ヤング係数 E=205,000 N/ mm²,降伏応力度は実勢値を加味して公称値の1.1倍で ある $\sigma_C = 358 \text{ N/mm}^2$ とする。
- 5. 各層の梁の全塑性モーメントの総和 ΣM_{th} に対する軸

力を考慮した柱の全塑性モーメントの総和 ΣM_{bc}の比 $\Sigma M_{bc}/\Sigma M_{bb}$ が1.5を上回るように設定している。

6. 図3に架構の剛性の分布を示す。各層の剛性は直線的 な分布となっている。

2.2 解析対象

ブレースは図4に示すように各層の外側構面にX型にブ レース配置する。解析対象として、一般的に中低層構造物 に使用される座屈拘束ブレース(完全弾塑性の復元力特性 を示すもの)を各層に設置した架構,これに対して R-brace を設置した架構の地震応答低減効果について議論する。表 2にブレースの断面リストを示す。ブレースはブレース剛 性比 K_{bi}/K_f より断面を決定し、架構の剛性に対してブレー スの占める剛性の比をブレース系水平力分担率βとしてい る。ブレース系水平力分担率は0.2, 0.4, 0.6とした。

図2の解析のモデルには、柱、梁に断面性能を入力し、 ブレースの設定として, 座屈拘束ブレースには完全弾塑性 を示す復元力特性を, R-braceには原点を指向するような復 元力特性を再現した単軸バネを設定し、弾性剛性、降伏耐

カを入力している。座屈拘束ブレースは、片壊れ型(Z型)、R-brace は X 型に配置する。

表3に入力地震動を表4に固有値解析の結果として固有 周期を,図5に観測記録波の速度応答スペクトルを示す。 入力地震波は,Taftの観測記録波を使用する。観測記録波 のNS成分をX軸方向にのみ入力する。それぞれ最大速度 が75 kine,100 kine となるように,加速度を基準化する。 ブレース架構の固有周期は,およそ0.9~1.2の範囲にある。

2.3 解析条件

解析条件は以下のとおりとする。

- 数値解析には SNAP. ver 6.0(任意形状立体フレーム弾 塑性解析ソフト)を使用する。
- 2.数値積分の方法は Newmark β法 (β=0.25 の平均加速 度法)とする。
- 3. 減衰は瞬間剛性比例型で減衰定数 h=0.02 とする。
- 地震終了時の残留変形を得るため、地震後自由振動が 十分に小さくなる 100 s 迄解析を行う。

3. 数値解析結果と考察

解析結果の一例として、Taft を入力した場合のブレース 系水平力分担率 β =0.6 の場合の R-brace 付き架構,座屈拘 束ブレース付き架構の8,6,4,2層の層せん断力 – 層間 変形角を図6,9に,層間変形角の時刻歴を図7,10それ ぞれ示す。また架構の最大応答,最小応答,地震後の架構 の残留変形としてステップ最終の層間変形角の分布を図8, 11に示す。解析結果より座屈拘束ブレース付き架構は完全 弾塑性の復元力特性を示し、 β =0.2 の場合には、架構の応 答は低減しているが残留変形は生じている。しかし β =0.6 では 75 kine の場合には、残留変形を解消している。また

表3 入	力地震動
------	------

地震波	最大加速度 (gal)	最大速度 (kine)	記録時間(s)
taft	152.7	15.7	54.4

表4 固有周期

エゴル	固有周期(s)		
29.00	1次	2次	
ラーメン架構	1.368	1.223	
$\beta = 0.2$	1.235	1.022	
$\beta = 0.4$	1.113	0.871	
$\beta = 0.6$	0.987	0.737	

100 kine の場合には,残留変形は生じているものの 1/200 (rad) まで低減している。次に R-brace を導入した場合に は,座屈拘束ブレースと同様にブレース系水平力分担率が 0.2の場合には,残留変形が生じているが,βが増大すると, 75 kine の場合には架構の最大・最小応答を低減しており残 留変形は生じているが 1/500 (rad)以下にまで低減されて

 ▲ 正方向最大応答
 ● 残留変形角 (a) β=0.2

図11 層間変形角の時刻歴 (Taft 100 kine)

(c) β=0.6

いる。また 100 kine の場合の β が0.2, 0.4の場合には、座 屈拘束ブレース付き架構と同程度の応答値を示しているが、 残留変形の低減効率が大きく座屈拘束ブレース付き架構と 比べ、残留変形が少ない。そして、 β =0.6 の場合には、座 屈拘束ブレースと比較して変位の最大応答は大きいが、残 留変形に着目すると1~3層では残留変形は解消されてお り、4~7層では残留変形は生じているものの1/200 (rad) 以下となっている。このように、多層多スパン架構に R-brace をX型に配置することで、入力速度75 kine の場合 には、従来使用されてきた座屈拘束ブレースと同等の性能 を発揮し、100 kine の場合には変位最大応答値は、座屈拘 束ブレース付き架構と比べ大きな値となるが、残留変形は 低減する。

4. 結 論

原点立ち上がり型の復元力特性を付与させたブレースを 多層多スパン架構に設置した架構の時刻歴地震応答解析を 実施し,以下の知見を得た。

- R-brace を各層にX型に配置することにより、架構の 応答、残留変形を低減でき従来使用されている座屈拘 東ブレースと同程度の性能が期待できることを明らか とした。
- 2. 架構に R-brace を導入することで,入力速度 100 kine

相当の地震の際には、残留変形低減効果を発揮し1/200 (rad)以下にまで低減できることを明らかとした。

文 献

- 山西央朗:原点立上がり型復元力特性を有するブレースを設置した1層鋼構造物に関する研究,広島工業大学紀要.研究編,51巻,pp.177-182,2017.2
- 2)石橋亮、山西央朗、田川浩、高松隆夫:原点立上がり 型復元力特性を有するブレースと制振ブレースを併用 した低層鋼構造物応答について、日本建築学会中国支 部研究報告集 日本建築学会中国支部 編、39巻、pp. 337-340、2016.3
- 3) 佐伯英一朗,前田泰史,中村秀司,緑川光正,和田 章:実大アンボンドブレースに関する実験的研究,日 本建築学会構造系論文集,第476号,pp.149-158, 1995.10
- 4)加藤貴志,岩田衛,和田章:損傷制御構造における座 屈拘束ブレースの性能評価,日本建築学会構造系論文
 集,第552号,pp.101-108,2002.2
- 5)高松隆夫,玉井宏章,小松真吾,山西央朗:多層NC
 ブレース架構の地震応答性状に関する研究,広島工業
 大学紀要.研究編,51巻,pp.69-75,2017.2