原点立上り型復元力特性を有するブレースを設置した 1層鋼構造物に関する研究

山西 央朗*

(平成28年11月1日受付)

A STUDY ON PORTAL-FRAME WITH BRACE HAVING BUILD-UP-FROM-ORIGIN-POINT-TYPE

Teruaki YAMANISHI

(Received Nov. 1, 2016)

Abstract

R-brace own the performance of residual deformation reduction in a steel building. This paper shows performance of residual deformation reduction and earthquake response behavior of the steel buildings with R-brace obtained by the numerical analysis. The response behavior is similar to the buildings with earth-quake magnitude and the usual design technique can be applied to capacity of R-brace. The damage concentration of story in usual buildings can be decreased by the R-brace.

Key Words: moment resist frame with brace, build-up-from-origin-point-type, seismic analysis

1 序論

制振ダンパーは地震時の水平力に対して効率よく抵抗・ エネルギー吸収するが、一方で、架構の層間変形角とダン パー力の位相差により、弾塑性領域においては地震後、架 構に残留変形を生じさせる可能性を有している。これは、紡 錘型の復元力特性を示すラーメン架構にも該当する(図1参 照)。すなわち、制振(履歴型)ダンパーにより制振設計を 適用した鋼構造物においては、架構の応答を低減する利点 と共に、地震後の残留変形が生じ易いという問題を内包して いる。

このような残留変形の問題に対し,各接合部にエンドプ レート形式を採用し,緊結要素であるボルトにポストテン ションを導入することで原点を指向する復元力特性を架構 に付与し,内部応力の釣合のみで架構の残留変形を抑制す る"セルフセンタリング"が提唱されている^{1),2)}。しかし, これらは既設構造物への導入が難しく,また,エンドプレー ト形式接合部の抵抗特性は部材軸力から支配的な影響を受ける³⁾ため,制振ダンパーを設置した架構に導入するには, 高度な設計技術を要する。

そこで、本研究では、セルフセンタリング性能が期待でき る原点立上り型復元力特性^{4),5)}を、ブレースに付与したシス テムを提案する。当該システムの最大応答、従来の紡錘型履 歴形状と比較したときの残留変形の変化について議論する。 当該システムの特徴は、

- ・ブレースによりシステムを構築するので、既設構造物への導入が可能である。
- ・ブレース設置可能な構面があれば、制振ダンパーと併用 可能である。
- ・比較的低容量から実現できるため、小規模構造物にも適 用可能である。

本論文では先ず,ブレースに原点立上り型復元力特性を 付与する工法を実験的に検証し,次いで,1層1スパンラー メン鋼構造物に適用した場合の効果を吟味する。

^{*} 広島工業大学工学部建築工学科

山西央朗

2. 原点立上り型復元力特性を有するブレース (R-brace)

ここでは,原点立上り型復元力特性を有するブレース(以後, R-braceと記す)の構成・機構を示す。

2.1 R-braceの構成

R-braceの構成を図2に示す。片端に楔, 楔受け, バネ, 楔台で構成される"楔デバイス"を配置し, 更に, ブレース 軸部全体を覆う鋼管, 鋼管ナット01・02, バネ, バネ台 で構成される"圧縮変位吸収機構"を設置している。

2.2 R-braceの機構(動作と復元力特性)

次いで,動作を図3に,同図の記号に対応した復元力特 性概念を図4に示す。架構からの変位は,ガセットプレー ト,ナット台または楔台を介してブレースの軸方向変位と して入力される。ここでは,ナット台は不動,楔台のみが 移動すると考えて各種挙動を以下に列挙する。また,初期 値を変位0として表現する。

- ・ 楔台が右方向に変位すると、ブレースは引張の弾性抵抗 を開始し、引張方向への変位入力を続けると引張降伏・ 塑性伸びを呈する。(O→A→B)
- ・除荷すると,弾性剛性で荷重は低下する。引張軸力が0 となると楔受けが楔から離間して抵抗力が喪失し,抵抗 力が0のまま変位0に向かう。この機構により,①ブレー スには圧縮変位が入力されない。(C→O)

尚、この時、楔台と楔受け(右側ナット)間の相対距離 が広がると、楔がバネの力により常に楔台と楔受け間に 貫入を続ける。この動作により、楔台と楔受け間の物理 的な隙間は解消され続けるので、引張方向の変位入力に 対して、直ぐに抵抗を開始する機構を確保できる。

・ 楔台が、変位0よりも左方へ変位すると楔台から鋼管ナッ

図8 部材実験載荷用プログラム

ト 01 が接触抵抗し, 鋼管ナット 02 のナット台からの物理 的離間を生じさせる。この機構により, 楔台と楔受け間の 相対距離の広がりを回避でき, 鋼管ナット 02 とナット台 間の物理的離間が解消されるまでは, 引張方向の変位入 力がなされても, ブレースは抵抗しない。(O→D→O)

すなわち,変位0より圧縮側の領域においては,ブレー スはいかなる変位入力に対しても抵抗力を発揮しないこと となる。

・その後,変位0より引張方向へ変位が入力されると,ブ レースは直ぐに弾性抵抗を開始する。

2.3 楔デバイスに関する基礎技術40

楔デバイスの機能を確保する上で,ブレースに引張軸力 が作用したときに楔と楔受けが摩擦力により固着する必要 がある。図5の接触面における静止摩擦係数 μ と接触面角 度 θ₀ との関係式を展開すれば,

$$\tan^{-1}\left(\frac{P_C \cdot \sin \theta_D}{P_C \cdot \cos \theta_D}\right) = \theta_D \le \tan^{-1} \mu \quad \cdot \quad (1)$$

となる。期待される静止摩擦係数より,接触面角度=楔の 角度を決定すれば,ブレースからの圧縮力(ブレース引張軸 力抵抗時)に楔と楔受けは固着し,図4の機能を確保できる。

3. R-brace の部材実験

ここでは, R-brace の部材実験概要と, その実験結果を 示し, R-brace の復元力特性を議論する。

3.1 部材実験概要

図6,7にブレース,楔デバイス,圧縮変形吸収機構と ガセットプレート周りの詳細を示す。

ブレースには M20 の全ネジ鋼を用い,楔デバイスの楔 は平鋼溶接接合で構成,楔受けは極厚鋼板を切断・切削加 工して作成,圧縮変形吸収機構は薄肉円形鋼管と鋼管端部 に設ける交換用ナットに替わり簡易留め駒を設置する。

載荷は、ナット台を固定してブレース台にブレース軸方 向変位δを入力して実施する。載荷プログラムは図8に示 すように、漸増・漸減載荷とする。

3.2 部材実験結果

図9に実験結果として、ブレース軸力T-ブレース軸方 向変位 δ 関係を示す。ブレース軸力は、ブレースが引張変 形を受ける領域でしか発生しておらず、更に、降伏・塑性 伸びした後においても原点より抵抗を開始しており、図4 に示す履歴形状が再現できることを実証できた。

以上より,単一のブレースにより図3に示す挙動を示したが,更に,図10に示すように R-brace を X 型に配置することで,原点立上り型復元力特性を実現できる。従って, R-braceにおいては X 型に配置した場合を基本として,以後の議論を行う。

4.1層1スパン架構の時刻歴地震応答解析

ここでは、1層1スパン架構の時刻歴地震応答解析を実施して、R-braceによる残留変形低減効果を議論する。解析には、複合非線形解析プログラム CLAP.fを用いる。

4.1 解析対象

ラーメンのみの架構,一般的な小規模鋼構造物に用いられ る引張ブレース(=G-braceと呼び,スリップ型復元力特性 を示すもの)を導入した架構の応答・残留変形を従来の応答 とする。これに対し,ラーメン架構に R-brace を導入したも

図9 ブレース軸力 T – ブレース軸方向変位 δ 関係

図10 R-brace を X 型に配置した場合の復元力特性

図11 フレーム解析モデル

のの応答・残留変形を用いて、R-braceの有用性を議論する。

表1,2に解析変数,1次固有周期,入力加速度を,図 11 に解析モデルの構成を示す。先ず、ラーメン架構のみの モデルとして, 柱に□-300x300x16, 梁に H350x250x9x14 を用いたものを設定する。次いで、柱断面を -300x300x12~ -200x200x6の間で変化させ、梁は接合部 係数が1.2程度となるよう設定する。更に、保有水平耐力 がラーメン架構のみの場合と同一となるブレース断面を設 定し、システムとしての保有水平耐力に占めるブレースの 割合を,ブレース水平力負担率としている。なお,1次固 有周期はおよそ 0.3~0.4 秒の範囲にある。

図11の解析モデルには、柱、梁に断面性能を入力し、 ブレース部としては原点立上り型復元力特性を再現したせ ん断バネを架構に並列に設定して、ブレースによる弾性水 平剛性と降伏水平耐力を入力している。

最後に、時刻歴応答解析には表3(a)に示す3種の波 を入力する。また、解析ステップは0.0025 秒刻みとして いる。

表1 時刻歷応答解析変数

No.		柱断面	梁断面	ブレース断面積	ブレース水平力負担率
		mm	mm	mm ²	-
01	ラーメン架構	□-300x300x16	H-350x250x9x14	0	0
02		□-300x300x12	H-400x250x8x13	300	0.15
03		□-300x300x9	H-300x200x8x12	810	0.40
04	ラーメン架構	□-300x300x6	H-250x175x7x11	1,220	0.60
05	G-brace	□-200x200x12	H-298x149x5.5x8	1,400	0.70
06		□-200x200x9	H-250x125x6x9	1,520	0.75
07		□-200x200x6	H-200x150x6x9	1,650	0.80
08		□-300x300x12	H-400x250x8x13	300	0.15
09		□-300x300x9	H-300x200x8x12	810	0.40
10	ラーメン架構	□-300x300x6	H-250x175x7x11	1,220	0.60
11	R-brace	□-200x200x12	H-298x149x5.5x8	1,400	0.70
12		□-200x200x9	H-250x125x6x9	1,520	0.75
13		□-200x200x6	H-200x150x6x9	1,650	0.80

表2 1次固有周期

ブレース水平力負担率	1次固有周期
-	sec
0	0.439
0.15	0.356
0.40	0.338
0.60	0.310
0.70	0.310
0.75	0.299
0.80	0.293

表3 入力加速度

(a) 水平方向

(h) 4	讼市方	

earthquake	direction	maximum acc. gal	note			
el centro	NS	510	for 50 kine			
taft	EW	492	for 50 kine			
PCL12		356				

earthquake lirection maximum acc gal Gravity 981

4.2 解析結果と考察

図 12, 13 に解析結果の一例として, el centro を入力した 場合のラーメン架構のみ、ブレース水平力負担率β=0.40 の場合の G-brace, R-brace の層せん断力 – 層間変形角関 係と層間変形角の時刻歴を、それぞれ示す。また、各解析 の最大・最小応答と、地震後の残留変形として最終ステッ プの層間変形角の分布を図13に示す。

図 12, 13 より, 先ず, ラーメン架構のみでは紡錘型の復 元力特性を示すため、地震動後に 0.0025 (rad) 程度の残留 変形が生じている。次いで、G-braceを導入することで履歴 形状は変化しているものの、残留変形は生じ、更に、最大応 答はやや大きくなっている。これは、スリップ現象によって 繰返し載荷時のエネルギー吸収効率が低減したことに基因 したものである。そして, R-brace を入れた場合は, 残留変 形は0となり、更に、最大応答も低減している。このように、 R-brace は紡錘型の復元力特性を示すラーメン架構と並列に 設置しても、残留変形低減効果を発揮することが分かる。

更に, 図 14 より, R-brace は β および入力地震波によ

ることなく、いずれも残留変形を解消している。一方、 G-braceの場合は図13(d)より、ラーメン架構のみの場 合よりも大きな残留変形角が生じている場合もあり、更に、 βが増大すると最大・最小応答は増大する傾向にある。

これより, R-braceの応答・残留変形低減効果が架構の 弾性剛性増大(短周期化)によるものではないことが分かる。

5. 結論

原点立上り型復元力特性をブレースに付与する工法の提 案,部材実験,1層1スパンの時刻歴地震応答解析を実施

- し、以下の知見を得た。
- 提案したブレースをX型に配置することにより、ブレースに原点立上り型復元力特性を付与できることを 明らかにした。
- 原点立上り型復元力特性を付与したブレースをラーメン架構に導入することで、最大応答を低減、架構の残留変形を解消できることを明らかにした。

参考文献

- 中島正愛, 吹田啓一郎, 池永昌容, 松宮智央, 倉田真 宏:セルフセンタリング導入による鋼構造骨組の残留 変形低減効果, 日本建築学会大会学術講演梗概集(北 海道), pp.765-766,2004.8.
- 池永昌容,長江拓也,中島正愛,吹田啓一郎:残留変 形低減をめざしたセルフセンタリング柱脚の開発と載 荷実験,日本建築学会構造系論文集,第612号, pp.223-230,2007.2.
- 3)山西央朗、高松隆夫、玉井宏章、澤田樹一郎、松尾彰、 引張軸力領域を含む変動軸力と曲げを受けるアンカーボ ルト多数配列型露出柱脚に関する研究、日本建築学会 構造系論文集、第76巻第660号、pp.397-405、2011.2.
- 4)アンカーボルトを多数配列したノンスリップ型露出柱 脚の復元力特性 – 無軸力下の場合のセルフセンタリ ング性能 –、山西央朗、高松隆夫、玉井宏章、松尾彰、 日本建築学会構造系論文集、第 621 号、pp.155-162、 2007.11.
- 5) 楔デバイス付接合部を有する架構の地震応答性状、高 松隆夫、玉井宏章、澤田樹一郎、景山朋定、山西央朗、 日本鋼構造協会鋼構造年次論文報告集、第20巻、 pp.807-814、2012.11.