

高松 隆夫*・玉井 宏章**・藤本 信介***・岩瀬 貴信****

(平成28年11月1日受付)

Design method for strengthening H-shaped steel beam using CFRP plate —Collapse prevention condition of bond based upon previous experimental results—

Takao TAKAMATSU, Hiroyuki TAMAI, Shinsuke FUJIMOTO and Takanobu IWASE

(Received Nov. 1, 2016)

Abstract

The authors have investigated and proposed methods for strengthening H-shaped steel beams using CFRP plates bonded to the tension flange. This paper proposes a design method for strengthening beams using CFRP plates based upon previous experimental results that give relationship between shearing stress on an edge of the CFRP plates and tensile-shearing strength of the bond at collapse of the CFRP plates.

Key Words: CFRP, Four points bending test, Fracture mechanism, Design method

1. はじめに

著者等は、H形鋼梁の引張側フランジに炭素繊維プレート(以降,CFRP)を貼付け、曲げ剛性の増大を図る補強 工法の提案・研究を行っている^{1.2)}。3点及び4点曲げ載 荷実験より、剛性の向上を確認している。また、剛性は CFRP貼付けによる有効断面2次モーメントを考慮した解 析値と良好に対応し、評価方法の妥当性についても明らか にしている。更に、CFRP部分貼付けにおいて CFRP端 部から剥離破壊を生じることがあり破壊メカニズムについ ての検証も行っている^{3.4)}。破壊メカニズムについては、 CFRP端部に作用するせん断応力度に起因していると考え られ、特に、多層貼付けでは剥離破壊が生じやすく、 CFRP4層部分貼付けで比較的剥離破壊が生じやすいこと が実験的に明らかとなっている。しかしながら、以前の実 験では鋼材の表面状況・養生条件等に起因して CFRP1 層 部分貼付けにおいても剥離破壊が生じている。また,試験 体数が少なく破壊メカニズムについて十分な検証を行った とは言い難い。

そこで本論文では、養生条件等を改善した新しい試験体 を用いた4点曲げ載荷実験を実施し、実験データに基づい て設計法の提案を行う。方法として、先ず、4点曲げ載荷 実験から得られた各試験体のCFRP ひずみ度分布を提案 式により多項式近似する。次に、多項式近似に基づいてせ ん断応力度を予測し、接着剤の引張せん断強度との関係か ら設計法を提案する。

2. 既往の実験データに基づくせん断応力度の算定

本章では、先ず、代表例として2種類の実験結果を示し、 CFRP 端部に作用するせん断応力度の傾向について明らか

^{*} 広島工業大学工学部建築工学科

^{**} 長崎大学工学部工学科

^{***} 東レ建設(株) 技術部

^{****} 広島工業大学大学院工学系研究科建設工学専攻

にする。次に,既往の実験データからせん断応力度と接着 剤の引張せん断強度の関係性について示し,後述の近似次 数「*i*」を決定する。

2.1 試験体

表1に素材特性値を,表2に接着剤の力学特性を,図1 に試験体形状を,それぞれ,示す。

試験体に用いる H 形鋼は H-250x125x6x9の断面を採用 し, H 形鋼片側フランジには鋼構造のコンクリートスラブ を想定した板厚 20mm の鉄板を接着剤により貼付けてい る。CFRP は中弾性(ML)型,幅 50mm,板厚 2 mmを 使用し,2列貼付けとする。CFRP 貼付けに使用する接着 剤は二液タイプ常温硬化型エポキシ樹脂であり,前述した 鉄板貼付けの際にも使用している。CFRP を貼付ける部分 はグラインダー及びベルトサンダーで H 形鋼の黒皮を除 去し,サンドペーパー #240, #1,500 で表面処理を施した 後に CFRP を貼付ける。尚,接着剤は主剤2:硬化剤1の 割合で調合し,CFRP 貼付け後気温5℃以上の環境で7日 以上の養生とした。

試験体は1層と4層の2種類とし、それぞれの試験体名称はCFRP1/1100fW, CFRP4/1100fWとする。尚、各試験体は基本的な通常貼付け工法としている。

2.2 載荷方法及び計測方法

図2に載荷装置を,図3に計測位置を,それぞれ,示す。

尚,図3 (b),(c)は代表例として CFRP1/1100fW を示し ており,CFRP4/1100fW においても同様の計測方法であ る。

載荷形式は、試験体中央部に等曲げ区間を設けた4点曲 げとする。載荷は、単調載荷としCFRPの剥離もしくは 試験体Nの降伏荷重(P_y =125kN)まで行う。試験体降伏 荷重までの載荷としたのは、CFRP補強の設計条件として、 部材が降伏するまで剥離破壊が生じないことを目的として いるためである。

計測方法として,荷重は載荷装置の油圧計測により計測 する。変位は梁中央部及び支点に設けた変位計により計測 する。ひずみ度はひずみゲージにより計測し,ひずみゲー ジ貼付け位置は図1に併せて示している。また,平面保持 の仮定並びに有効断面2次モーメントの評価の妥当性を確 認するため,750断面,350断面を設け(図1),ひずみゲー ジを図3(b),(c)の様に貼付けている。尚,計測値の整 理方法として荷重Pは油圧計測値の1/2とし,中央変位 8 は中央変位から両端支点変位の平均を差し引き算出する。

2.3 解析方法

2.3.1 ひずみ度

図4に解析値算出モデルを示す。

本節では、ひずみゲージ貼付け位置のひずみ度 εの解析 方法について示す。ひずみ度 εは CFRP を考慮した有効 断面 2 次モーメント *I* を用いて、次式により算出する。

ここに, *M*:曲げモーメント, *E*_s:鋼材のヤング係数, *I*: 有効断面2次モーメント, *y*:複合材の中立軸からひずみ ゲージ貼付け位置までの距離である。

尚,有効断面2次モーメント*I* は図4の定義を用いて, 次式により導出している。

$$I' = \sum_{i=0}^{n} (I_{si} + A_{si} \cdot e_{si}^{2}) + \frac{E_{c}}{E_{s}} \cdot \sum_{i=0}^{n} (I_{ci} + A_{ci} \cdot e_{ci}^{2})$$
(2)

ここに, I_{si} : *i* 番目鋼材の断面 2 次モーメント, A_{si} : *i* 番 目鋼材の断面積, e_{si} : 複合材の中立軸から *i* 番目鋼材の図 心間距離, E_c : CFRP のヤング係数, I_{ci} : *i* 番目 CFRP の 断面 2 次モーメント, A_{ci} : *i* 番目 CFRP の断面積, e_{ci} : 複 合材の中立軸から *i* 番目 CFRP の図心間距離である。

図4 解析値算出モデル

2.3.2 CFRP 端部のひずみ度

CFRP 端部 200mm の範囲のひずみ度を多項式で近似す る。CFRP 端部からの距離 x の位置におけるひずみ度を下 式により仮定する。尚、(3) 式は x=0, ε =0 及び x=200, ε = ε_{200} を満足する多項式である。

$$\varepsilon = (-1)^{i-1} \cdot \frac{\varepsilon_{200}}{200^i} \cdot (x - 200)^i + \varepsilon_{200}$$
(3)

ここに,*i*:近似次数(自然数),ε₂₀₀:CFRP 端部から 200mm の位置におけるひずみ度である。

2.3.3 CFRP 端部に作用する最大せん断応力度

CFRP の垂直応力度 σ は (3) 式を用いて, 次式により 算出する。

$$\sigma = E_c \cdot \varepsilon = (-1)^{i-1} \cdot \frac{E_c \cdot \varepsilon_{200}}{200^i} \cdot (x - 200)^i + E_c \cdot \varepsilon_{200}$$
(4)

図5に示す CFRP の微小部分の力の釣合いより,接着 剤に作用するせん断応力度τは,次式で表される。

$$\tau = t \cdot \frac{d\sigma}{dx} = (-1)^{i-1} \cdot \frac{t \cdot i}{200^{i}} \cdot (x - 200)^{i-1} \cdot E_c \cdot \varepsilon_{200}$$
(5)

ここに,t:CFRP 板厚である。

図5 CFRP の微小部分の力の釣合い

(5) 式より,最大せん断応力度 τ_{max} が CFRP 端部 x=0 の位置に作用するとし,最大せん断応力度 τ_{max} を,次式に より算出する。

$$\tau_{\max} = \frac{t \cdot i}{200} \cdot E_c \cdot \varepsilon_{200} \tag{6}$$

2.3.4 仮定剥離面のせん断応力度

(6) 式により算出された最大せん断応力度は CFRP 最 上層とその下層との間に作用するせん断応力度である。 従って、CFRP 多層貼付けの場合、各 CFRP 層間に同等 のせん断応力度が作用すると仮定して仮定剥離面のせん断 応力度を、次式により算出する。尚、実際の CFRP 層間 のひずみ度を実験的に確認することは計測上困難であるた め上記の仮定を用いている。

$$\tau' = n \cdot \tau_{\max}$$
$$= n \cdot \frac{t \cdot i}{200} \cdot E_c \cdot \varepsilon_{200}$$
(7)

ここに, *n*: CFRP 層数である。

2.4 実験結果及び考察

2.4.1 P-δ 関係

表3に実験結果を,図6に*P*-δ関係を,それぞれ,示す。 尚,表3,図6には比較として無補強試験体Nの実験結 果も併せて示している。

図6より、CFRP1/100fW、CFRP4/1100fW 共に無補強

表4 仮定剥離面のせん断応力度

試驗体	D (LAN)	园粉		-10 1/ ²)				
叫切欠件	$I_{max}(\mathbf{KIN})$	眉奴	i=3	<i>i</i> =4	i=5	<i>i</i> =6	i=7	t (N/mm)
CFRP1/1100fW	125.3	1	9.9	13.2	16.5	19.8	23.1	23.1
CFRP4/1100fW	125.3	4	6.7	9.0	11.2	13.5	15.7	27.0
P _{max} :最大荷重 τ _{max} :最大せん断応力度 τ':仮定剥離面のせん断応力度								

試験体Nより,剛性が向上していることがわかる。また,本試験体においては,部材の降伏限界まで載荷しても CFRPの剥離破壊は生じていない。

2.4.2 平面保持の仮定

図7に各断面のひずみ度分布を示す。尚,図7には,(1) 式により算出した解析値を併せて示し,図中記載の荷重の ひずみ度分布を示している。また,縦軸のhは中立軸か らのひずみゲージ位置を示しており,中立軸位置を0と定 義している。

図7より,各断面のひずみ度は直線的な分布を示してい ることから平面保持の仮定が成立しているといえる。特に, CFRP 端部から 200mm の位置に相当する 350 断面も平面 保持の仮定が成立し,(1)式により概ね評価できているこ とがわかる。若干実験値の方が(1)式で評価した解析値よ り小さい値を示しているが,これは設計上安全側の評価で あるといえる。

2.4.3 CFRP 端部のひずみ度分布とせん断応力度

表4に仮定剥離面のせん断応力度を,図8にひずみ度分 布と(3)式による多項式近似を,それぞれ,示す。尚,表

図8 ひずみ度分布と(3)式による多項式近似

4の赤太字で示しているのは算定に用いた最大せん断応力 度である。また、図8は、最大荷重時のひずみ度分布を示 し、(3)式により近似した曲線(*i*=3~7)を併せて示してい る。図中左下には決定した*i*と最大荷重を記している。

表4より, CFRP1/1100fWの仮定剥離面のせん断応力 度は23.1N/mm², CFRP4/1100fWの仮定剥離面のせん断 応力度は27.0N/mm²である。このことから, CFRP 層数 が増加するとせん断応力度も増加し,剥離破壊が生じやす いことがわかる。特に, CFRP4/1100fWのせん断応力度 は接着剤の引張せん断強度24.7N/mm²を超えており, CFRP4層部分貼付けでは剥離破壊を生じる可能性が高い ことがいえる。また,近似次数*i*はCFRP1/1100fWで7, CFRP4/1100fWで3であった。近似次数と層数の関係に ついては,2.4.4項で後述する。

2.4.4 実験データのまとめ

2.4.3 項では、2種類の試験体について、実験結果に基 づいた仮定剥離面のせん断応力度を示した。本項では、既 往の実験データを含めた全試験体の実験結果を総括し、仮 定剥離面のせん断応力度を算定した一覧表を示す。

表5に仮定剥離面のせん断応力度一覧表を,図9に各試 験体のひずみ度分布と(3)式による多項式近似を,それぞ れ,示す。尚,表5,図9は2.4.3項の試験体も内包して いる。また,著者等が提案している継手貼付け工法⁵⁾によ る実験結果も,破壊メカニズムが同様であるため実験結果 として加えている。

表5,図9より,層数が増加することに伴い近似次数 *i* が小さくなる傾向にあることがわかる。これは,層数が多 いと定着部が長くなる傾向にあり,それに伴って CFRP ひずみ度分布の曲線が滑らかになるためである。この傾向 により,層数が少ない場合 *i* が大きくなり,CFRP1 層貼 付け試験体であっても仮定剥離面のせん断応力度が接着剤 の引張せん断強度 24.7N/mm² に近い値を示す場合がある。

表5より, 仮定剥離面のせん断応力度を接着剤の引張せ ん断強度と比較すると, 全ての CFRP4 層貼付け試験体で 接着剤の引張せん断強度を超えており, その内の2体は剥離 破壊を生じている。仮定剥離面のせん断応力度が24.7N/mm² を超えると剥離する可能性が高まり, CFRP4 層貼付けは 剥離破壊の危険性が高いことがいえる。一方で, CFRP3 層貼付け試験体 CFRP3/1100fW は22.5N/mm²で層内破壊 を生じており, 接着剤の引張せん断強度に到達する前に CFRP で破壊が決定している。これは, CFRP 切出し時に 生じた CFRP 断面部の微小亀裂が要因であることがわかっ ており, 端部無接着貼付けにより回避することが可能であ る⁶⁾。

2.4.5 CFRP 層数に対する近似次数「i」の決定

2.4.4 項の実験結果に基づき, CFRP 層数に対する近似

討論休	ছা	P (LNI)	屠粉		-101/2				
中八初大 14		$I_{max}(\mathbf{KIN})$	/盲 奴	i=3	i=4	i=5	i=6	i=7	1 (N/mm)
CFRP1/1100fW	(a)	125.3	1	9.9	13.2	16.5	19.8	23.1	23.1
CFRP1/1100fjW	(b)	125.3	1	10.3	13.7	17.2	20.6	24.0	24.0
CFRP1/1100fjW	(c)	125.9	1	9.9	13.3	16.6	19.9	23.2	19.9
CFRP2/1100fW	(d)	125.3	2	8.7	11.6	14.5	17.4	20.3	23.3
CFRP2/1100fjW	(e)	125.1	2	8.3	11.0	13.8	16.6	19.3	27.6
CFRP2/1100fjW	(f)	125.1	2	8.5	11.3	14.2	17.0	19.8	17.0
CFRP3/1100fW	(g)	123.3* ¹	3	7.5	10.0	12.5	15.0	17.5	22.5
CFRP4/1100fW	(h)	125.3	4	6.7	9.0	11.2	13.5	15.7	27.0
CFRP4/1100fjW	(i)	92.3* ¹	4	4.8	6.4	8.0	9.6	11.2	25.6
CFRP4/1100fjW	(j)	106.0*2	4	5.2	6.9	8.6	10.3	12.1	27.6

表5 仮定剥離面のせん断応力度一覧表

P_{max}:最大荷重(*¹:層内破壞,*²:界面破壞) τ_{max}:最大せん断応力度 τ':仮定剥離面のせん断応力度

図9 各試験体のひずみ度分布と(3)式による多項式近似(a),(b)

図9 各試験体のひずみ度分布と(3)式による多項式近似(c)~(j)

次数「*i*」を決定する。表6に CFRP 層数に対する近似次 数*i*を示す。

本論文における近似次数 i は表6に示す通りである。尚, CFRP3 層の実験データは1つしかないため、本論文にお いては *i=*3 とした。また, *i* については図 9 からもわかる 通りばらつきが大きく今後更に試験体数を増やし検証する 必要がある。

表6 CFRP 層数に対する近似次数 *i*

CFRP層数	1	2	3	4
i	7	4	3	3

3. 接着剤の破壊防止条件

存在曲げ応力に対して CFRP 部分貼付け補強を施し, 有効断面 2 次モーメント I' により必要な断面性能を満た している段階で,接着剤の破壊防止条件を適用することと する。接着剤の破壊防止条件に関する設計は,以下の手順 ならびに提案式で行う。

 存在曲げ応力並びに有効断面2次モーメントより CFRP 端部から200mmの位置におけるひずみ度を 2.4.2項の平面保持の仮定に基づいて、(8)式により仮 定する。

$$\varepsilon_{200} = \frac{M}{E_s \cdot I'} \cdot y \tag{8}$$

ここに, *M*:存在曲げ応力, *E_s*:鋼材のヤング係数, *I*: 有効断面 2 次モーメント, *y*: 複合材の中立軸か らひずみゲージ貼付け位置までの距離である。

仮定剥離面のせん断応力度τ'を,(9)式により算出する。

$$\tau' = n \cdot \frac{t \cdot i}{200} \cdot E_c \cdot \varepsilon_{200} \tag{9}$$

ここに, n: CFRP 層数, t: CFRP 板厚, i: 近似次数(表6), E_c: CFRP のヤング係数である。

 仮定剥離面のせん断応力度 τ'は,接着剤の引張せん 断強度と安全率を用いて,(10)式を満足するように設 計する。

$$\tau' < \frac{2}{3} \cdot \sigma_s \tag{10}$$

ここに, σ_s:接着剤の引張せん断強度 (=24.7N/mm²) である。

4. 結 論

本論文では,実験結果に基づいて接着剤の破壊防止条件 について明らかにし,破壊防止条件の設計法を提案した。 得られた知見を以下に示す。

- H 形鋼梁に CFRP を部分貼付けすることで、剛性は 向上する。
- 2. CFRP 端部から 200mm の位置における断面は平面保 持の仮定が成立する。
- 3. CFRP 端部のひずみ度分布を(3)式により近似できる。
- CFRP4 層部分貼付け試験体の実験結果より、仮定剥 離面のせん断応力度 τ'が接着剤の引張せん断強度
 24.7 N/mm²を越えると,剥離破壊の可能性が高まる。
- 5. 近似次数 *i* と (8)~(10)式を用い,接着剤の破壊防止 条件に関する設計ができる。

CFRP1 層部分貼付けにおいても剥離破壊は生じず一定の 実験成果が得られた。しかしながら、一部の実験データは 少なく十分な検証を行えていない。今後、試験体数を増や し近似次数*i*について十分な検討を行う。更に、補強効果 の向上を目指し、CFRP 層数を増加した試験体についても 実験的検証を行う。

謝 辞

本実験においては高松研究室の学生諸氏に御協力頂きま した。また,接着剤はコニシ株式会社に提供して頂きまし た。ここに記して謝意を表します。

参考文献

- 1)服部明生,高松隆夫,玉井宏章,小澤吉幸:フランジ 断面欠損部を有するH形鋼梁の炭素繊維プレート補 修に関する研究,日本建築学会中国支部研究報告集, CD-ROM 論文番号-239 2013.3
- 服部明生,高松隆夫,玉井宏章,藤本信介:CFRPにより部分補強されたH形鋼梁の載荷実験,鋼構造年次論文報告集,Vol.21,CD-ROM論文番号-106,2013.11
- 3)藤本信介,服部明生,高松隆夫,玉井宏章:H形鋼梁 に貼付けた CFRP のひずみについて:その1 実験 概要,日本建築学会大会学術講演梗概集,CD-ROM 論文番号-22471,2013.8
- 4)服部明生,高松隆夫,玉井宏章,藤本信介:H形鋼梁 に貼付けた CFRP のひずみについて:その2 考察, 日本建築学会大会学術講演梗概集,CD-ROM 論文番 号-22472,2013.8
- 5)藤本信介,高松隆夫,玉井宏章,岩瀬貴信:継手を有 する炭素繊維プレートによるH形鋼梁の補強工法に 関する実験的研究,日本建築学会大会学術講演梗概集, CD-ROM 論文番号-22502,2016.8
- 6)藤本信介,高松隆夫,玉井宏章,服部明生:H形鋼梁の炭素繊維プレート端部無接着貼付けに関する研究, 日本建築学会大会学術講演梗概集,CD-ROM 論文番号-22435,2015.9

本論文では、鋼材の表面状況・養生条件等が改善され