楔デバイス付柱継手に関する解析的研究

高松 隆夫*・玉井 宏章**・景山 朋定***・國井 翔平****

(平成26年10月30日受付)

Analytical study on column joint with wedge device

Takao TAKAMATSU, Hiroyuki TAMAI, Tomosada KAGEYAMA and Shohei KUNII

(Received Oct. 30, 2014)

Abstract

A column joint with self-centering capability is proposed and numerical analysis of a structure with the column joint is carried out to clarify the self-centering performance of the structure. It is obtained from the analytical results that the frame with the proposed column joints shows equivalent stiffness to rigid column-base and no residual deformation after an earthquake grand motion.

Key Words: Self centering, wedge-device connection, End plate type, Earthquake response analysis

1. はじめに

鋼構造の露出柱脚には、アンカーボルトを強くし、柱を 塑性化させるものと、アンカーボルトを弱くし、アンカー ボルトを塑性化させる二つのタイプが存在する。前者は柱 脚を保有耐力接合とするため、後者に比べ耐力が大きくな るが、柱に塑性ヒンジが形成され、柱に残留変形が生じる。 後者は、アンカーボルトを降伏させるため耐力が落ちるが、 残留変形が生じにくいと言われるスリップ型復元力特性を 持つ。

本研究室では、地震後の継続使用を困難にする要素であ る残留変形が生じない構造物の実現を目指した研究を行っ ている。これは、柱脚に図1に示す「ノンスリップ型露出 柱脚¹⁾」、梁継手に図2に示す「楔デバイス付梁継手²⁾」 を導入したものであり、これらの接合部は、残留変形低減 に効果のある原点立上り型復元力特性を有している。これ らの接合部を総称して「楔デバイス付接合部」と呼び、こ の復元力特性を付与した架構をセルフセンタリング (SC) 架構と称する。

* 広島工業大学工学部建築工学科

著者等は,SC架構を設計する際,通常の架構の設計後, 楔デバイス付接合部を別途設計し,そのまま適用するとい う手法で設計を行うことを目指している。しかしながら,

^{**} 長崎大学工学部工学科

^{***} 広島工業大学大学院工学系研究科知的機能科学専攻

^{****} 広島工業大学大学院工学系研究科建設工学専攻

図3 提案する楔デバイス付柱継手

現在の中層程度の鋼構造物は柱脚を保有耐力接合とするも のが多く、ノンスリップ型露出柱脚のようにアンカーボル トを降伏させる柱脚では、保有水平耐力が低下する。アン カーボルト降伏型で設計する場合、一層部分の層剛性が低 下し、部材断面を大きくする必要がある。

また, 楔デバイス付接合部はボルトに損傷を集中させ, 損傷が大きくなったボルトは交換するものとしているが, ノンスリップ型露出柱脚ではアンカーボルトがコンクリー トに埋め込まれているため, ボルト交換が困難であった。

そこで、本論文の目的は、上述の課題を解決する新しい 接合部を提案し、それを適用した架構の性能を確かめるこ とである。方法として、接合部形式を変数とした数値解析 を行う。

2. 楔デバイス付柱継手

図3に提案する楔デバイス付柱継手を,図4に抵抗機構 を,図5に力学モデルを,それぞれ,示す。

楔デバイス付柱継手は,柱下部と柱上部より構成される。 柱下部にはアンカーボルトを定着させるためのアンカース タンドおよびエンドプレートを取り付ける。柱上部にはボ ルトを緊結させるアンカープレートおよび楔デバイスを取 り付ける。アンカープレート・アンカースタンドは剛体と

して設計し,エンドプレートを変形させ, 圧縮合力点位置 を柱フランジ外縁とする。アンカーボルトには伸び能力の 高い転造ねじアンカーボルト³⁾を用いる。アンカースタン ド側のアンカーボルトに内ナットを設け, ボルトの塑性変 形が楔デバイス側に生じ, 楔の貫入によって原点立上り型 復元力特性を得る。柱下部と基礎コンクリートの接合は埋 込み形式か保有耐力接合として十分な剛性・耐力を持った 露出形式とする。

本工法の特徴として,柱下部の高さによって設計用継手 耐力を定められ,柱下端に塑性ヒンジを作る場合と同等の 保有耐力を得られる。ボルトを塑性化させるため架構に残 留変形を生じず,楔デバイスによって原点立上り型復元力 特性が得られる。また,アンカースタンド高さによりボル ト長さが決められ,曲げ耐力を変えることなく弾性回転剛 性を調整できる⁴⁾。ボルトは露出柱脚とは異なりコンク リートに埋め込まないため損傷したボルトの交換が容易に 行える。

継手耐力設定は,架構の崩壊メカニズム時における曲げ 応力から求める。継手曲げ耐力設定値_fM_{Ud}の算定式を以 下に示す。

$$_{j}M_{Ud} = \frac{\left|_{C}M_{PB}\right| + \left|_{C}M_{PT}\right|}{H} \cdot (h - _{U}h) \qquad \cdot \cdot \cdot (2.1)$$

$$h = \frac{\left|_{C} M_{PB}\right|}{\left|_{C} M_{PB}\right| + \left|_{C} M_{PT}\right|} \cdot H \qquad (2.2)$$

ここに, $_{C}M_{PT}$, $_{C}M_{PB}$: 崩壊メカニズム時の柱頭・柱脚 の曲げモーメントである。

3. 解析概要

数値解析は静的増分解析と地震応答解析の2種類行う。

3.1 解析手法

解析には、「CLAP.f^{5.6}」を楔デバイス付接合部の原点立 上り型復元力特性を有する回転ばねが利用できるように コード修正したものを用いる。部材の塑性化は、一般化硬 化ヒンジ法により考慮し、部材の応力度-ひずみ度関係は、 bi-linear型(降伏後剛性比1/100)としている。静的増分 解析では、Ai分布に基づく外力分布による荷重を与える。 地震応答解析では、ニューマークβ法のβ値0.25、数値 積分時間間隔1/200秒、減衰のタイプは瞬間剛性比例減衰 とし、一次減衰定数は、一般的な構造物を想定して0.02 としている。入力波には、JMA Kobe 波 NS 成分の速度を 50kine および100kine に基準化した波を用いる。尚、床ス ラブの梁の合成効果による剛性・耐力の増加、柱脚の変動 軸力による影響は考慮していない。

3.2 ボルト接合部評価式

図6に復元力特性モデルを,示す。

本解析では,ボルト接合部に図6に示す原点立上り型復 元力特性を有する回転ばねを設置する。柱継手の特性値の 算出には,以下の式を用いる。尚,梁継手は文献7)の式 を用いている。

$$K = \frac{E \cdot n_i \cdot A \cdot (d_c + d_t)^2}{R \cdot l_b} \qquad \qquad (3.1)$$

$$_{j}M_{U} = n_{i} \cdot A \cdot \sigma_{\gamma} \cdot (d_{c} + d_{t}) \qquad (3.2)$$

囸	種別	艇更升注	σ_y	I_x	Z_p	M_p
眉	但生力	町田り伝	(N/mm^2)	(mm^4)	(mm^3)	(kNm)
1		□ -500x500x22	325	1.61×10^9	7.55×10^{6}	2,452
2	*	□ -450x450x22	325	1.15×10^{9}	6.05×10^{6}	1,966
3	住	□ -450x450x19	325	1.02×10^{9}	5.30×10^{6}	1,722
4		□ -400x400x16	325	$6.05 \text{x} 10^8$	$3.54 \mathrm{x10}^{6}$	1,151
9	梁	H-650x250x12x25	325	$1.44 \text{x} 10^9$	$4.99 \mathrm{x} 10^{6}$	1,621
4	ブラケット	BH-650x300x16x28	325	1.91×10^{9}	6.64×10^{6}	2,157
1 2 3 4 2 3 4 8 R	梁	H-600x250x12x22	325	$1.10 \mathrm{x} 10^9$	4.11×10^{6}	1,335
	ブラケット	BH-600x300x16x25	325	$1.46 \mathrm{x10}^9$	5.52×10^{6}	1,795
4	梁	H-550x250x9x19	325	7.71×10^8	3.11×10^{6}	1,011
4	ブラケット	BH-550x300x12x22	325	1.05×10^{9}	4.25×10^{6}	1,382
р	梁	H-550x200x9x16	325	5.61×10^8	2.31×10^{6}	752
К	ブラケット	BH-550x250x12x19	325	8.04×10^{8}	3.31×10^{6}	1,075

表1 部材断面リストと断面性能

 σ_y : 降伏応力度 I_x : 断面 2 次モーメント Z_p : 塑性断面係数 M_p : 全塑性モーメント

表2 回転ばね特性値					
部位	K	$_{j}M_{U}$			
미미노	(kNm/rad)	(kNm)			
柱脚部	3.28×10^{5}	3,131			
1 層側柱継手部	2.25×10^{5}	536			
1 層中柱継手部	$1.46 \mathrm{x} 10^5$	232			
2 階梁継手部	5.51×10^{5}	1,235			
3 階梁継手部	$3.99 \mathrm{x} 10^5$	968			
4 階梁継手部	2.96×10^{5}	760			
R 階梁継手部	$1.97 \mathrm{x} 10^5$	504			
4 層中柱継手部	1.75×10^{5}	423			

K: 弾性回転剛性 _jM_U: 最大曲げ耐力

ここに, *K*: 弾性回転剛性, *E*: ヤング係数, n_i : *i* 列目の ボルト本数, *A*: ボルトの断面積, *R*: ボルト以外の要素の 弾性変形を考慮した低減係数 (=2⁸⁾), l_b : ボルトの有効長 さ (ナット間距離), $_jM_U$: ボルト接合部の最大曲げモーメ ント, σ_Y : ボルトの降伏応力度である。

楔デバイス付柱継手の弾性回転剛性・曲げ耐力は露出柱 脚のものと同様の算定式⁸⁾である。柱継手の評価式は,今 後,実験により確かめるが,露出柱脚と似た抵抗機構であ ることから露出柱脚の式を用いる。

3.3 解析対象架構

図7に解析モデルを,表1に部材リストと断面性能を, 表2に回転ばね特性値を,表3に固有周期を,それぞれ, 示す。

解析モデルは「パッシブ制振構造設計・施工マニュア ル⁹⁾」の4層4スパンモデルを基にする、側柱と中柱を含 んだ魚骨モデルとしている。鉛直荷重は各接点に集中荷重 として与えている。解析変数として、一般的な柱脚を保有 耐力接合としたモデル(*N type*)と本論文で提案する楔デ バイス付柱継手および楔デバイス付梁継手を導入したモデ ル(*SC type*)の2種類とする。*SC type*における柱継手の 位置および耐力は2章に従って決定している。尚、柱継手

図6 復元力特性モデル

固有周期

1次固有

周期 (sec)

1.02

1.15

表3

モデル

N type

SC type

のアンカーボルトの長さをボルト径の10倍とし,回転剛 性*K*を算出している。梁継手のブラケットは,材長をス パンの1割である640mmとし,断面を梁より大きくした 溶接組立て日鋼としている。梁継手の設計は保有耐力を 低減しないよう耐力を設計している。また,節点振り分け 法で考えた際,4層中柱柱頭部には塑性ヒンジが形成さ れる。梁継手にエネルギー吸収をさせようとすると,大き く耐力を低減させる必要があるため,4層中柱にも柱継手 を4FLから-1500mmの位置で用いている。

4. 結果と考察

静的増分解析結果により架構の剛性と耐力を比較し,地 震応答解析結果より残留変形と応答変形について考察す る。

4.1 静的增分解析

図8にベースシア *C*₁- 層間変形角 *r*₁ 関係を, 図9に1 層側柱曲げモーメント分布を, それぞれ, 示す。

図8より, SC type は N type と比較して, 剛性・耐力と もわずかながら低下するが, 同等の値を示している。図9

-64-

は、ある層間変形角時の1層側柱における曲げモーメント 分布であり、柱の $_{C}M_{p}$ と柱継手の $_{M_{U}}$ をあわせて示して いる。これを見ると、SC typeの曲げモーメントの分布が N typeと同じ形状であり、楔デバイス付柱継手の保有水 平耐力を調整できる性能が発揮されている。また、SC type は柱継手に塑性ヒンジが形成され、柱脚は塑性化し ていないことがわかる。柱継手耐力と位置によって柱脚に 作用する曲げ応力を制御できる。

4.2 地震応答解析

図 10 に最大層間変形角 r_i を,図 11 に残留層間変形角 last r_i を,図 12 に層せん断力係数 C_i分布を,それぞれ,示す。

図 10 より, SC type の残留層間変形角は, 50kine でほ ほ生じず, 100kine で継手のひずみ硬化による耐力上昇で 母材が塑性変形し, 1,2層に若干生じているが, N type と比べれば非常に小さい。構造物の継続使用が可能な残留 変形角は 1/200¹⁰という研究結果があり,それを利用する と,N type の 100kine でこれを超えている。しかしながら, 原点立上り型復元力特性を持った継手に塑性ヒンジを形成 する SC type では生じる残留変形角を,継続使用が可能な 水準まで落とすことができる。

図 11 より,層間変形角は,50kine で同等の値を示すが, 100kine では大きめになる傾向がある。100kine では架構 の塑性変形が大きく生じており,復元力特性により応答が 原点から始まる SC type の応答と異なるためである。残留 変形角が大きくない 50kine では近い値を示すため,SC 接 合部にすることで最大層間変形角は大きくならないことが わかる。

図 12 より、50kine、100kine どちらの地震波においても 層せん断力係数分布が同様の形状を示している。*SC type* でも大きく変わらない外力分布を示すことがわかる。

5. 結論

本論文では楔デバイス付柱継手を提案し,数値解析を行 うことで,その有用性を示した。得られた結論を以下に示 す。

- 棟デバイス付柱継手は、継手の位置によって設定耐力 を調整でき、ボルト降伏型でありながら保有水平耐力を 保有耐力接合とした場合と同等の値を得ることができ る。
- 2) 楔デバイス付柱継手および楔デバイス付梁継手を導入

したセルフセンタリング架構は,残留変形をほぼ0にで きる。

3) セルフセンタリング架構と通常架構を比較すると、
 50kine において最大層間変形角が同等の値を示し、
 50kine, 100kine とも層せん断力係数分布が同様の形状を示す。

参考文献

- 山西央朗,高松隆夫,玉井宏章,松尾彰:アンカーボルトを多数配列したノンスリップ型露出柱脚の復元力特性-無軸力下の場合のセルフセンタリング性能,日本建築学会構造系論文集,第621号pp.155-162,2007.11.
- 2)景山朋定,高松隆夫,玉井宏章,山西央朗,國井翔平: 長締めボルトを用いた楔デバイス付梁継手の載荷実 験,日本建築学会大会学術講演梗概集(近畿),CD-ROM 論文番号 -22393,2014.9
- 3)社団法人日本鋼構造協会:建築構造用アンカーボルト を用いた露出柱脚設計施工指針・同解説,2009.10.
- 4)山西央朗,笠井和彦,高松隆夫,玉井宏章:弾性回転 剛性と耐力を広範囲・高精度で調整できる鉄骨柱脚 -性能指定型設計に対応できる柱脚に関する研究 その 1-,日本建築学会構造系論文集,第683号 pp.213-222,2013.1.
- 5)小川厚治,多田元英:柱・はり接合部変形を考慮した 静的・動的応答解析プログラムの開発,第17回情報・ システム・利用技術シンポジウム論文集,pp79-84, 1994.12
- 6)多田元英:CLAP. f利用説明書・解析方法説明書, 鋼材倶楽部
- 7)景山朋定,高松隆夫,玉井宏章,山西央朗,國井翔平: 楔デバイス付接合部を有する架構のエネルギー吸収性 能,鋼構造年次論文報告集,pp498-503,2013.11
- 8)秋山宏:鉄骨柱脚の耐震設計,技法堂出版,1985.3.
- 9)日本免震構造協会:パッシブ制震構造設計施工マニュ アル,2003.10
- 油野弘,池永昌容,Jason McCormick,中島正愛,生活・技術・安全から見た許容残留変形 文献調査と 1970年に建設された建物調査 –,日本建築学会近畿 支部研究報告集,pp.221-224,2007.