Article

Revisit to Modelling Global Annual Average Temperature - A Parametric Approach

Satyabrata PAL*, Arunava GHOSH**, Subhabaha PAL*** and Sanpei KAGEYAMA****

(Received August 22, 2013)

Abstract

Global annual average temperature is regarded as a precise indicator of the warming of the globe over centuries and if we track the available record on it, it is observed that the available period of 133 years (1980–2012) can be partitioned into three distinct phases, 1880–1936, 1937–1980 and 1981–2012, based on temperature variation pattern (Pal *et al.*, 2013). The content of the said paper deals with the development of models, parametric and nonparametric, which produce high precision levels (as measured by value of R^2 coefficient) as high as 0.84. In this paper, a class of parametric models has been developed which is a combination of three mathematical functions, namely, cubic, exponential and trigonometric, respectively. An extensive search of models belonging to the abovementioned class identifies four different models whose R^2 values lie within the range, 0.826 to 0.860 as a distinct improvement in the value of R^2 vis-a-vis the precision level, over that obtained in Pal *et al.* (2013).

Key Words: Global warming, Parametric models

1. Introduction

The aspect of global warming is the most dreadful environmental phenomenon the impact of which is looming large as time advances. The concern is that human activities are the principal factors triggering this alarming state to which the future of the earth is almost bound to reach unless appropriate measures are devised to annihilate the underlying effects of global warming.

Recalling the partitions mentioned in Pal *et al.* (2013), it is observed that the third phase (1981 - 2012) is the most critical period. The present study is referred to this phase, and efforts have been made to develop models which are superior (in terms of

having greater precision levels, as measured by R^2 values) to the models available in the literature so far surveyed. After wide search in the quest for superior models it is found that a combination of three models (all distinct in nature), namely, cubic, exponential and trigonometric, produces higher values of R^2 coefficient as high as 0.86. The identified class (which is, indeed, a combination) contains four models denoted by M₁, M₂, M₃ and M₄, respectively. The model equations, predicted values under different models, standard errors of estimates and 95% confidence limits are given in Tables 1, 2 and 3, respectively. Table 4 contains the values of different precision criteria in respect of the above four models. The graph plots of the four models along with the data set are

* Agricultural Statistics, Bidhan Chandra Krishi Viswavidyalaya, Faculty of Agriculture, Mohanpur, Nadia, West Bengal, 741252, India e-mail: satyabrata.pal@hotmail.com

** Uttar Banga Krishi Viswavidyalaya, Department of Agricultural Statistics, Pundibari, Coochbehar, West Bengal, 736165, India e-mail: arunava ubkv@yahoo.co.in

^{***} SAP Development Lead, Manipal Global Education Services, Bangalore, Karnataka, 560002, India

e-mail:subhabaha@msn.com

^{****} Department of Environmental Design, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan e-mail:s.kageyama.4b@it-hiroshima.ac.jp

given in Annexure.

Section 2 is devoted to a description of the source of data and the method employed in the paper. Section 3 presents the results and subsequent discussions on the findings evolved in the paper. The last section, Annexure, displays the four graphplots (along with plots of distribution of residuals) in respect of the four models respectively.

Over all, it can be mentioned that the two models, M_1 and M_2 , have been identified and these two models are superior to the models obtained in Pal *et al.* (2013), diagnostic check results (on independence and normality of the estimated model errors) being satisfied in case of these two models.

2. Materials and Methods

The data sources are:

IPCC Report 2007 - http://www.ipcc.ch/publications_ and_data/publications_and_data_reports.shtml#1

Temperature Data Source - http://data.giss.nasa. gov/gistemp/tabledata v3/GLB.Ts+dSST.txt

This paper has taken into consideration the parametric and nonparametric models considered in Pal *et al.* (2013). Different structures of models created as combinations of mathematical functions of various kinds are here explored.

The structure of the combination which is found as the best is of the type: Cubic + Exponential + Trigonometric, and the model expression is given below.

$$y = a + bt + ct^{2} + dt^{3} + he^{t} + q\sin^{u}(wt) - r\cos^{v}(zt) + \varepsilon,$$

where ε 's are errors and follow NID (0, σ^2), the values of *u* and *v* are fixed at 5 and 3 in case of the models, M₁, M₂ and M₃, and the values of *u* and *v* are fixed at 3 and 4 in case of the model M₄ respectively. Also, *t* means years.

Remark: In case of each model, various values for the pair, (u, v), are tried but the optimum value for the pair (u, v), as given above, maximizes R^2 value obtained by fitting the respective model. For each such model, the remaining coefficients are estimated till the global convergence with respect to each such is reached after successive iterations.

3. Results and Discussions

This section contains the results obtained after fitting the models to the data. These are given in four tables, Table 1 to Table 4 respectively. Also given are the results on diagnostic checking (Draper and Smith, 1998) on the errors obtained after fitting the models (vide Table 5). It is evident from the *p*-values (Shapiro Wilk test and Kolmogorov Smirnov test) and z-values (Run Test) listed in Table 5 that the errors (after fitting the model in each case) are independent and also are normally distributed, implying that the results on diagnostic checks are satisfied. In fact, it can be seen from Table 5 that the probability values/levels are greater than .05/.025 as the case may be, and hence the null hypotheses concerning independence and normality can't be rejected, or in other words the model errors are independent and are normally distributed.

Table	1: Estir	nated m	odel	equations
-------	----------	---------	------	-----------

Model	Equations
M ₁ : (<i>u</i> =5, <i>v</i> =3)	$y = 14.20 - 0.01t + 0.002t^{2} - 0.00004t^{3} - 103E - 17e^{t} + 0.057\sin^{u}(887.7t) + 0.057\cos^{v}(117.7t) + \varepsilon$
M ₂ : (<i>u</i> =5, <i>v</i> =3)	$y = 14.24 - 0.02t + 0.003t^{2} - 0.00007t^{3} + 1.05E - 15e^{t} - 0.076\sin^{u}(-54.9t) - 0.046\cos^{v}(-0.957t) + \varepsilon$
M ₃ : (<i>u</i> =5, <i>v</i> =3)	$y = 14.19 - 0.009t + 0.002t^{2} - 0.00004t^{3} - 147E \cdot 17e^{t} - 0.04\sin^{u}(-45.47t) + 0.06\cos^{v}(0.774t) + \varepsilon$
M ₄ : (<i>u</i> =3, <i>v</i> =4)	$y = 14.16 - 0.006t + 0.002t^{2} - 0.00004t^{3} - 142E - 17e^{t} - 0.06\sin^{u}(-0.83t) + 0.04\cos^{v}(-1.24t) + \varepsilon$
	$1005 = 100 \pm 0^{-17} t$

For example, $103\text{E}-17e^{t} = 103.10^{-17}e^{t}$

Veen	Observed sectors	Predicted values					
rear	Observed values	M_1	M ₂	M_3	M_4		
1981	14.28	14.236	14.135	14.257	14.187		
1982	14.09	14.135	14.206	14.187	14.239		
1983	14.27	14.178	14.304	14.129	14.196		
1984	14.12	14.246	14.212	14.126	14.167		
1985	14.08	14.182	14.136	14.199	14.176		
1986	14.15	14.134	14.169	14.207	14.131		
1987	14.28	14.245	14.213	14.216	14.206		
1988	14.35	14.270	14.216	14.292	14.243		
1989	14.24	14.195	14.223	14.289	14.285		
1990	14.39	14.258	14.306	14.274	14.334		
1991	14.38	14.371	14.295	14.266	14.274		
1992	14.18	14.305	14.277	14.228	14.290		
1993	14.20	14.221	14.271	14.296	14.281		
1994	14.28	14.352	14.364	14.376	14.306		
1995	14.43	14.440	14.378	14.385	14.396		
1996	14.32	14.379	14.394	14.423	14.409		
1997	14.45	14.394	14.455	14.458	14.477		
1998	14.61	14.510	14.512	14.486	14.481		
1999	14.39	14.479	14.456	14.457	14.453		
2000	14.40	14.405	14.392	14.387	14.472		
2001	14.52	14.511	14.522	14.470	14.443		
2002	14.60	14.599	14.627	14.571	14.512		
2003	14.60	14.533	14.604	14.558	14.573		
2004	14.52	14.510	14.505	14.591	14.601		
2005	14.65	14.632	14.579	14.626	14.643		
2006	14.59	14.643	14.612	14.621	14.590		
2007	14.62	14.561	14.569	14.603	14.583		
2008	14.49	14.579	14.532	14.545	14.575		
2009	14.59	14.633	14.611	14.562	14.562		
2010	14.66	14.590	14.645	14.611	14.613		
2011	14.55	14.546	14.568	14.596	14.592		
2012	14.56	14.567	14.554	14.550	14.551		
2013	NA	14.417	14.669	14.321	14.346		

 Table 2: Predicted values under different models

NA-Not available

Table 3: Standard errors of estimates and 95% confidence limits

Model		M_1			M_2			M_3			M_4	
coefficients	SE	LCL	UCL	SE	LCL	UCL	SE	LCL	UCL	SE	LCL	UCL
а	0.07	14.06	14.34	0.07	14.1	14.3	0.07	14.0	14.3	0.08	14.01	14.32
b	0.02	-0.05	0.03	0.02	0	0	0.02	0	0	0.02	- 0.05	0.04
С	0.00	-0.00	0.01	0.00	0	0	0.00	0	0	0.00	0.00	0.01
d	0.00	-0.00	0.00	0.00	0	0	0.00	0	0	0.00	0.00	0.00
h	0.00	0.00	0.00	0.00	0	0	0.00	0	0	0.00	0.00	0.00
q	0.04	-0.02	0.13	0.03	0	0	0.03	0	0	0.03	-0.13	-0.00
r	0.03	-0.12	0.01	0.03	0	0	0.03	0	0	0.05	-0.15	0.07
W	0.02	887.7	887.8	0.01	- 54	- 54	0.02	- 45	- 45	0.02	-0.88	-0.79
Z	0.02	117.6	117.7	0.02	-1	0	0.02	0.74	0.81	0.03	-1.29	-1.18

SE = standard error; LCL = lower confidence limit; UCL = upper confidence limit

 Table 4: Values of different precision criteria for four models

Models (<i>e.d.f.</i> = 23)	MSE (mean square error)	R^2	MAE (mean absolute error)	F_o	Pr. (F greater than F_o)
$M_1: (u=5, v=3)$	0.00599	0.860	0.0528	17.71	> 0.0001
M ₂ : (<i>u</i> =5, <i>v</i> =3)	0.00610	0.858	0.0530	17.35	> 0.0001
M ₃ : (<i>u</i> =5, <i>v</i> =3)	0.00684	0.840	0.0593	15.14	> 0.0001
M ₄ : (<i>u</i> =3, <i>v</i> =4)	0.00742	0.826	0.0632	13.73	> 0.0001

e.d.f. = error degrees of freedom

Models		Test for 1	Test for Independence			
	Shapiro-	Wilk test	Kolmogorov	-Smirnov test	Run test	
	Statistic (W)	<i>p</i> -value	Statistic (D)	<i>p</i> -value	z-value	<i>p</i> -value
$M_1: (u=5, v=3)$	0.979	0.76	0.098	> 0.15	0.822	0.411
$M_2: (u=5, v=3)$	0.971	0.543	0.121	> 0.15	0.00	1.00
M ₃ : (<i>u</i> =5, <i>v</i> =3)	0.961	0.30	0.116	> 0.15	1.286	0.199
M_4 : (u=3, v=4)	0.966	0.396	0.091	> 0.15	0.639	0.523

Table 5: Diagnostic checking for four models

W: Value of Shapiro-Wilk test statistic. D: Value of Kolmogorov-Smirnov test statistic

ANNEXURE

Here, the subscript, 't' denotes year, e.g., $t = 1, 2, 3, \cdots$ mean first, second, third, \cdots years, respectively.

 O_i represents the observed value of temperature at the *i*-th point of time, i.e., y_i .

 M_1 : (*u*=5, *v*=3)

 M_3 : (*u*=5, *v*=3)

References

Draper, N. R. and Smith, H. (1998). *Applied Regression Analysis*, John Wiley and Sons.

Pal, S., Pal, S. and Kageyama, S. (2013). Modelling the Global Mean Temperature. *Bull. Hiroshima Inst. Tech. Research* 47, 149-152.

 M_2 : (*u*=5, *v*=3)

