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1  Introduction

Recently, several interesting results, concerning the 
norm-order of a linear invariant family and some con-
nections with starlikeness, convexity and other geo-
metric properties of holomorphic mappings in n , 
were obtained by Pfaltzgraff and Suffridge [23]. Also 
they showed a number of growth, covering and distor-
tion results for mappings that belong to a linear invari-
ant family on the Euclidean unit ball in n. Hamada 
and Kohr generalized the results in [23] to the unit 
ball in a complex Hilbert space in [9] and to the unit 
polydisc in [10]. For linear invariant families in several 
complex variables, see also the books [3, 4] and the 
references therein.

This paper is concerned with the study of linear 
invariance on the homogeneous ball of a complex 
Banach space. A complex Banach space is a JB*-triple 
if, and only if, its open unit ball is homogeneous. All 
four types of classical Cartan domains and their infi-
nite dimensional analogues are the open unit balls of 
JB*-triples, and the same holds for any finite or infinite 
product of these domains ([13], see also [8, 15]). Thus 
the unit balls of JB*-triples are natural generalizations 
of the unit disc in  and we have a setting in which a 
large number of bounded symmetric homogeneous 
domains may be studied simultaneously. We obtain 
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some connection between the norm-order of a linear 
invariant family and the starlikeness of order 1/2. Also, 
we give some result concerning the radius of univa-
lence of some linear invariant families.

2  Preliminaries

Let B be the unit ball in a complex Banach space X. Let 
Y be a complex Banach space. A holomorphic mapping 
f B Y: →  is said to be locally biholomorphic if the 
Fréchet derivative Df ( x ) has a bounded inverse for 
each x B∈ . A holomorphic mapping f B Y: →  is said 
to be biholomorphic if f (B) is a domain in Y, f −1  exists 
and holomorphic on f (B). A biholomorphic mapping 

f B Y: →  is said to be convex if f (B) is a convex 
domain. Let X* be the dual space of X. For each 
x X∈ \ { }0 , we define

T x x X x x x x( ) { : , ( ) }.= ∈ = =∗ ∗ ∗ ∗
   1

By the Hahn-Banach theorem, T( x ) is nonempty. Let 
f B X: →  be a locally biholomorphic mapping. Let 
α ∈  with 0 1< <α . We say that f is a starlike map-
ping of order α if

1 1
2

1
2

1

 x
x Df x f x∗ −( ) − <[ ( )] ( )

α α

for x B∈ \ { }0 , x T x∗ ∈ ( ).
Let L X Y( , ) denote the set of continuous linear 

operators from X into Y. Let IX be the identity in L X X( , ).
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Let S B( ) denote the family of locally biholomor-
phic mappings from B to X, normalized by f ( )0 0=  
and Df I X( )0 = .

We recall that a JB*-triple is a complex Banach 
space X together with a continuous mapping(called 
Jordan triple product)

X X X X x y z x y z× × → ( , , ) { , , }

such that for all elements in X the following conditions 
( )J1 -( )J4  hold, where for every x y X, ∈ , the operator 
x y  on X is defined by z x y z { , , }:
( )J1 	 { , , }x y z  is symmetric bilinear in the outer vari-

able x, z and conjugate linear in the inner vari-
able y,

( )J2 	 { , ,{ , , }} {{ , , }, , }a b x y z a b x y z= 
{ , ,{ , , }} {{ , , }, , }a b x y z a b x y z= - − +{ ,{ , , }, } { , ,{ , , }}x b a y z x y a b z− +{ ,{ , , }, } { , ,{ , , }}x b a y z x y a b z− +{ ,{ , , }, } { , ,{ , , }}x b a y z x y a b z ,  

   ( Jordan triple identity )
( )J3 	 x x L X X ∈ ( , ) is a hermitian operator with spec-

trum ≧ 0,
( )J4 	    { , , }x x x x= 3.

It is known [16, p.523] that in this definition condition 
( )J4  can be replaced by    x x x = 2 and that

     x y x y ≤ ·

holds for all x y X, ∈ . Then, we have

 { }x y z, , ≤  x y z x y z    · · , , , .for all � (2.1)

Example 2.1.  Let S be a locally compact topological 

space and let C S0( ) be the Banach space of all continu-

ous complex valued functions f on S vanishing at infinity 

with || || sup | ( )|f f S= . Then C S0( ) is a JB∗-triple with 

{ , , }f g h f gh= .

A linear subspace I X⊂  is called a subtriple if 
{ , , }I I I I⊂ .

For every a X∈ , let Q X Xa : →  be the conjugate 
linear operator defined by Q x a x aa( ) { , , }= . This opera-
tor is called the quadratic representation and it satis-
fies the fundamental formula

Q Q Q QQ b a b aa( ) =

for all a b X, ∈ . For every x y X, ∈ , the Bergman opera-
tor B x y L X X( , ) ( , )∈  is defined by

B x y I x y Q QX x y( , ) .= − +2 

From (2.1), we have

 B x y( , ) ≤ (1 2+    x y· ) ,  x y X, .∈ 	 (2.2)

In case  x y < 1, the spectrum of B x y( , ) lies in 
{ : | | }z z∈ − < 1 1 . In particular, the fractional power 
B x y GL Xr( , ) ( )∈  exists for every r ∈  in a natural 
way (cf. [16, p.517]).

Let B be the unit ball of a JB*-triple X. Then, for 
each a B∈ , the Möbius transformation ga defined by

g x a B a a I x a xa X( ) ( , ) ( )/= + + −1 2 1 ,	 (2.3)

is a biholomorphic mapping of B onto itself with 

g aa( )0 = , g aa( )− = 0 and g ga a−
−= 1.

Proposition 2.2.  Let ga be as above. Then for any 

a B∈ , ga extends biholomorphically to a neighborhood of 

B and we have

[ ( )] ( )( , ) { , , },Dg D g x y x a ya a0 0 21 2− = − 	 (2.4)

 Dga( ) ,0 1≤ 	 (2.5)

 

 

[ ( )] ,Dg
aa 0

1
1

1
2

− =
−

	 (2.6)

Dg Dga aζ ( ) ( ),0 0=   | | ,ζ = 1 	 (2.7)

g a
a

aa( ) ,=
+

2
1 2
  	

(2.8)

g x x a x a x O aa( ) { , , } ( ),= + − +  

2 	 (2.9)

[ ( )] ( ).Dg I O aa X0 1 2− = +  
	 (2.10)

Moreover, we have

1
1

1
1 12

2

2 2−
≤ +

− −− 

   

   g w
w z

w zz( )
( · )

( )( )
, 

z w B, ∈ .	 (2.11)

Proof. Since      x a x a ≤ · , ga and g ga a
−

−=1  
extend holomorphically to    x a< 1/ . Then, ga 
extends biholomorphically to a neighborhood of B . 
Since

g x a B a a x x a x O xa( ) ( , ) [ ( ) ] ( )/= + − +1 2 3  

        = + − +a B a a x x a x O x( , ) [ { , , }] ( ),/1 2 3
 

we have

Dg x y B a a y y a x x a y

O x
a( )( ) ( , ) [ { , , } { , , }]

( )

/= − −

+

1 2

2
 

and

D g y z B a a y a z z a y

B a a y a z
a

2 1 2

1 2

0

2

( )( , ) ( , ) [ { , , } { , , }]

( , ) { , ,

/

/

= − −

= − }}.
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Since Dg B a aa( ) ( , ) /0 1 2= , we obtain (2.4). By [17, Cor-
ollary 3.6], we obtain (2.5) and (2.6). Since

B a a B a a( , ) ( , ),ζ ζ =   | | ,ζ = 1

we obtain (2.7). Since the JB*-subtriple of X generated 
by a, denoted by Xa, is isometrically isomorphic to 
0( )S  for some locally compact subset S ⊂   ([16]), it 
is easy to see that in Xa and hence in X, we have

g a
a

aa( ) .=
+

2
1 2
 

Thus, we obtain (2.8). Since B a a I O aX( , ) ( )/1 2 2= +   , 
we have (2.10) and 

g x a B a a x x a x O aa( ) ( , ) [ { , , }] ( )/= + − +1 2 2
 

	    = + − +a x x a x O a{ , , } ( ). 

2

Since

1
1 2

1 2 1 2

−
=

−

− −

 

 

g w
B w w B w z B z z

z( )
( , ) ( , ) ( , ) ,/ /

	 (2.12)

z w B, ∈  by [19, Proposition 3.1], we obtain (2.11) from 
(2.2) and (2.6).� □

x X∈  is called regular if x x GL X ∈ ( ) and x X∈  
is called a tripotent if { , , }x x x x= . A point u B∈  is said 
to be a real (resp. complex) extreme point of B  if the 
only x X∈  satisfying  u x+ ≤λ 1 for all real (resp. 
complex) numbers λ with | |λ ≤ 1 is x = 0 . We call 
u B∈  holomorphically extreme in B  if for every open 
neighborhood U of 0 ∈  and every holomorphic map-
ping f U X: →  the conditions f u( )0 =  and f U B( )⊂  
imply that ′ =f ( )0 0. u B∈∂  is called a simple boundary 

point of B if u ty B+ ∈∂ , y X∈ , t ∈ , | |t < 1 always 
implies y = 0. The following result is obtained in Kaup 
and Upmeier [18, Proposition 3.5].
Proposition 2.3.  Let B be the unit ball of a JB*-triple X 

and u X∈ . Then the following conditions are equivalent.

	 (i)	 u is a regular tripotent in X;
	 (ii)	 u is holomorphically extreme in B ;
	 (iii)	 u is a complex extreme point of B ;
	 (iv)	 u is a simple boundary point of B.

Let E be the set of all complex extreme points of 
B. As a corollary of the above proposition, we obtain 
the following maximum principle for holomorphic 
mappings on the unit ball of a JB*-triple. When B is the 
unit ball of a J*-algebra, see Harris [13, Theorem 9]. 
By the Krein-Milman theorem (see e.g. [5, Chapter 4]),  

it is known that if B  is a compact subset of X,  then E 
is nonempty.
Proposition 2.4.  Let B be the unit ball of a JB*-triple 

X and let E denote the set of all complex extreme points 

of B . If E ≠ 0 , then

(i)	 Let g Ba ∈ Aut( ) given in (2.3). Then ga( )E E=  

for any a B∈ ;

(ii) Let Y be a complex Banach space. Let f B Y: →  

be a holomorphic mapping with a continuous 

and bounded extension to B ∪E .  Then 

	    f x f u u( ) sup{ ( ) : }≤ ∈E ,  x B∈ .

Moreover, f is completely determined by its value on E.
Proof. (i) Since g ga a

−
−=1 , it suffices to show that 

ga( )E E⊂  for any a B∈ . Let v g ua= ( ), where u ∈E . 
Assume that v x B+ ∈λ  for | |λ ≤ 1. Let

h g v xa( ) ( )λ λ= +−1 ,  λ ∈U .

Then h is holomorphic on U by Proposition 2.2, 

h g v ua( ) ( )0 1= =−  and h U B( )⊂ . Since u is a holomor-
phic extreme point by Proposition 2.3, we must have 

′ =h ( )0 0. This implies that Dg v xa
− =1 0( )( ) . Since ga

−1 
extends biholomorphically to a neighborhood of B , we 
obtain x = 0 . Thus, v ∈E .
(ii) By the mean value property for vector valued holo-
morphic functions, we obtain

f x f g e u dx
i( ) ( ( )) ,= ∫1

2 0

2

π
θ

π θ

where u ∈E . Since g e ux
i( )θ ∈E  for θ π∈[ , ]0 2  by (i), we 

obtain (ii).� □

3  Linear invariance in X

We define the notion of linear invariant families and 
the norm-order in the unit ball B of a complex Banach 
space X.
Definition 3.1.  Let B be the unit ball of a complex 

Banach space X. Then a family F is called a linear-

invariant family if:

(i) F L⊂ S B( ),
and

(ii) Λφ( )f ∈F , for all f ∈F  and φ ∈ AutB, 

where AutB denotes the set of biholomorphic automor-

phisms of B, and Λφ( )f  is the Koebe-transform

Λφ φ φ φ φ( )( ) [ ( )] [ ( ( ))] ( ( ( )) ( ( ))),f x D Df f x f= −− −0 0 01 1Λφ φ φ φ φ( )( ) [ ( )] [ ( ( ))] ( ( ( )) ( ( ))),f x D Df f x f= −− −0 0 01 1

� (3.1)
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for all x B∈ .
Note that the Koebe transform has the group 

property Λ Λ Λψ φ φ ψ



= .
If F is a linear invariant family, we define two 

types of norm-order of F (cf.[23]), given by

   

 

ord D f yX
f y

, sup sup ,1
1

21
2

0F
F

= ⋅





∈ =

( )( )

and

   

 

ord D f y yX
f y

, sup sup ( )( , ) .2
1

21
2

0F
F

= 





∈ =

It is clear that    ord ordX X, ,1 2F F≥ . Since 

  D f y z2 0( )( , )

  = + + − −{ }1
2

0 0 02 2 2D f y z y z D f y y D f z z( )( , ) ( )( , ) ( )( , ) ,

 
= + + − −{ }1

2
0 0 02 2 2D f y z y z D f y y D f z z( )( , ) ( )( , ) ( )( , ) ,

we obtain    ord ordX X, ,1 23F F≤ . Moreover, if X is 
a Hilbert space, then    ord ordX X, ,1 2F F=  by 
Hörmander [14, Theorem 4].

We now give some examples of linear invariant 
families in the unit ball B of a complex Banach space X.
Example 3.2.  S(B), the set of all biholomorphic map-

pings in S B( ). If X is a complex Hilbert space of 

dimension n, where n > 1 , the linear invariant family 

S(B) does not have finite norm order (see [23], cf. [1]).
Example 3.3.  α( )B , the union of all linear invariant 

families contained in S B( ) with norm-order not greater 

than α. This is a generalization of the universal linear 

invariant families  α α= ( )∆  considered in [24].
Example 3.4.  If G is a nonempty subset of S B( ), then 

the linear invariant family generated by G is the family 

Λ Λ[ ] { ( ): , }.G G= ∈ ∈φ φg g BAut

The linear invariance is a consequence of the 
group property of the Koebe transform. Obviously, 
Λ[ ]G G=  if and only if G is a linear-invariant family. In 
the case of the unit Euclidean ball and the unit poly-
disc in n, this example provided a useful technique 
for generating many interesting mappings (see [20, 21, 
22]). For example, we can use a single mapping f from 
S B( ) to generate the linear invariant family Λ[{ }]f . 
The family Λ[{ }]i , generated by the identity mapping 
i x x( ) = , consists of all the Koebe transforms of i( x ).
Example 3.5.  ( )B , the set of convex mapping in 

S B( ).
As in the proof of [23, Theorem 5.1], we obtain 

the following result. We will see later that  
 ord BX , ( )2 1 = = 1, if B is the unit ball of a JB*-triple. 
We remark that if X = 1 is the complex Banach space 
o f  summable  complex  sequences ,  then 
 ord BX , ( )2 0 = , since the only mapping f B∈( ) is 
the identity mapping [26, Corollary 1].
Proposition 3.6.  Let B be the unit ball of a complex 

Banach space X and let ( )B  be the set of normalized 

convex mappings on B. Then  ord BX , ( ) .2 1 ≤
When B is the unit ball of a JB*-triple X, we have 

the following first order approximation formula for the 
Koebe transform of f.
Lemma 3.7.  Let g Ba ∈ Aut( ) given in (2.3). If f ∈
S B( ), then

[ ( )] [ ( ( ))] ( ( ( )) ( ( )))Dg Df g f g x f ga a a a0 0 01 1− − −

  = + − − − + →f x Df x a x a x a D f a f x O a a( ) ( )( { , , }) ( )( , ( )) ( ), .2 20 0 

= + − − − + →f x Df x a x a x a D f a f x O a a( ) ( )( { , , }) ( )( , ( )) ( ), .2 20 0 

Proof. Since

f x x D f x x D f x x x( ) ( )( , ) ( )( , , ) ,= + + + ⋅⋅⋅1
2

0
1
6

02 3

we have

f g a O aa( ( )) ( ),0 2= +   	 (3.2)

and

[ ( ( ))] ( )( , ) ( ).Df g I D f a O aa X0 01 2 2− = − ⋅ +   � (3.3)

Since

f x y f x Df x y O y( ) ( ) ( ) ( ),+ = + +  

2

we obtain from (2.9) that 

f g x f x a x a x O a

f x Df x a x a x O a
a( ( )) ( { , , } ( ))

( ) ( )( { , , }) (

= + − +

= + − +

 



2



2 ).

� (3.4)

From (2.10) and (3.3), we have

[ ( )] [ ( ( ))]

( )( , ) ( ).

Dg Df g

I D f a O a
a a

X

0 0

0

1 1

2 2

− −

= − ⋅ +   � (3.5)

Then from (3.2), (3.4) and (3.5), we have

[ ( )] [ ( ( ))] ( ( ( )) ( ( )))

( ( )( , )

Dg Df g f g x f g

I D f a
a a a a

X

0 0 0

0

1 1

2

− − −

= − ⋅ ))[ ( ) ( )( { , , }) ]

( )

( ) ( )( { , , })

f x Df x a x a x a

O a

f x Df x a x a x

+ − −

+

= + − −

 

2

aa D f a f x

O a

−

+

2

2

0( )( , ( ))

( ). 
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This completes the proof.� □
The following useful result is a natural extension 

to JB*-triples of [24, Lemma 1.2] (cf. [9, 10, 21]).
Lemma 3.8.  Let F be a linear-invariant family on the 

unit ball B of a JB*-triple X with  ord X ,1 F = α  and 

 ord X ,2 F = β . Then

α = −




< = = 



∈
supsup ( , , , ) { , , } :

, ,

f
f x y z y x z

x y z

F

1
2

1 1

Φ

      � (3.6)

and

β = −




< = 



∈
supsup ( , , , ) { , , } :

, ,

f
f x y y y x y

x y

F

1
2

1 1

Φ

    	 (3.7)

where

Φ( , , , )

[ ( )] [ ( )] ( )( ( ) , ( ) ).

f x y z

Dg Df x D f x Dg y Dg zx x x= − −0 0 01 1 2

Proof. It is clear that

supsup ( , , , ) { , , } :

, .

f
f x y z y x z

x y z

∈
−





< = = 



≥

F

1
2

1 1

Φ

      α

On the other hand, let f ∈F  and φ = gx  where 
x B∈ . It is clear that F ∈F , where F w f w( ) ( )( )= Λφ , 
w B∈ . Therefore, we have

1
2

0 12D F y z y z X y z( )( , ) , , , .≤ ∈ = =α    

	
� (3.8)

If we differentiate twice the mapping F f= Λφ( ), 
given by (3.1), we obtain that

DF w D Df Df w D w w B( ) [ ( )] [ ( ( ))] ( ( )) ( ), ,= ∈− −φ φ φ φ0 01 1

DF w D Df Df w D w w B( ) [ ( )] [ ( ( ))] ( ( )) ( ), ,= ∈− −φ φ φ φ0 01 1  and

D F w y z

D Df D f w D w y D w z

2

1 1 20 0

( )( , )

[ ( )] [ ( ( ))] { ( ( ))( ( ) , ( ) )= − −φ φ φ φ φ
++ ∈Df w D w y z y z X( ( )) ( )( , )}, , .φ φ2

Evaluating at w = 0, we obtain that

  

D F y z

f x y z Dg D g y zx x

2

1 2

0

0 0

( )( , )

( , , , ) [ ( )] ( )( , ).= + −Φ

Hence, from (2.4) and this equality, we have

D F y z f x y z y x z2 0 2( )( , ) ( , , , ) { , , }.= −Φ

Finally, from (3.8) and the last relation, one concludes 
that

1
2

Φ( , , , ) { , , } ,f x y z y x z− ≤ α

for all x B∈  and y z X, ∈ ,    y z= = 1. Thus, we 
obtain (3.6). Putting z y=  in the above argument, we 
obtain (3.7). This completes the proof.� □

Note that in the case of one complex variable, the 
relations (3.6) and (3.7) are equivalent to 

α β= = − ′′
′

−
∈ <

supsup ( | | )
( )
( )

.
| |f b

b
f b
f b

b
F 1

21
2

1

(compare with [24, Lemma 1.2]).
Pfaltzgraf f and Suf fridge [23, Theorem 3.1] 

proved recently that if M is a linear invariant family on 
the Euclidean unit ball of n , then  ord M ≥ 1. 
Hamada and Kohr obtained the extension of this result 
to the unit ball of a complex Hilbert space in [9, Theo-
rem 3.2] and to the unit polydisc in [10, Theorem 3.2]. 
In the following we obtain the extension of this result 
to the unit ball of a JB*-triple.
Theorem 3.9.  Let F be a linear invariant family on 

the unit ball B of a JB*-triple X. Then  ord X ,2 1F ≥ .

Proof. We will use an argument similar to that in the 
proof of [23, Theorem 3.1]. Let β =  ord X ,2 F  and let 

x B∈ \ { }0  be fixed. Putting y
x
x

x B= ∈
 

, \ { }0 , in 

(3.7), we obtain that

β ≥ −1
2

1
2 2

   x
f x x x

x
x x xΦ( , , , ) { , , } ,

where

  

Φ( , , , )

[ ( )] [ ( )] ( )( ( ) , ( ) ).

f x x x

Dg Df x D f x Dg x Dg xx x x= − −0 0 01 1 2

Therefore, we have

β ≥ −( )∗1
2

22
 x

z f x x x x x xΦ( , , , ) { , , } ,	 (3.9)

where z T x x x∗ ∈ ({ , , }). Further, let 
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h
x

z f x
x

( ) ( , , ) , | | ,ζ ζ ζ ζ= ( ) <∗

2
1

2
 

 

Ψ

where

  

Ψ( , , )

[ ( )] [ ( )] ( )( ( ) , ( ) ).

f x

Dg Df x D f x Dg x Dg xx x x

ζ
ζ ζ= − −0 0 01 1 2

Then h is a holomorphic function on | | /ζ < 1  x  and 
by (2.7)

Φ Ψ( , , , ) ( , , ), | | .f x x x f xζ ζ ζ ζ ζ ζ= =2 1

Since h( )0 0= , for every r with r x< 1/  , there exists 
a value of ζ  with | |ζ = r  such that Reh( ) .ζ ≤ 0

We now replace x by ζ x  and z∗ by ζ
ζ| |

z∗ in (3.9), 

where | |ζ = 1 so that Reh( )ζ ≤ 0. Then we deduce that 

β ζ ζ≥ − ≥ −ℜ + ≥h
x
x

h x x( ) ( ) ,
 

 

   

3

2

because we have used the fact that Reh( )ζ ≤ 0. Hence, 
β ≥  x  for all x B∈ . Therefore  ord X , .2 1F ≥  This 
completes the proof.� □

As a corollary of Proposition 3.6 and  Theorem 3.9, 
we obtain the following result (cf. [23, Theorem 5.1]).
Corollary 3.10.  Let B be the unit ball of a JB*-triple 

X and let ( )B  be the set of normalized convex mappings 

on B. Then  ord BX , ( ) .2 1 =
Next, we give a result on a lower bound for star-

likeness. Hamada and Kohr [11] (cf. [12]) proved the 
following sufficient  condition for starlikeness on the 
unit ball of a complex Banach space.
Proposition 3.11.  Let f be a locally biholomorphic 

mapping on the unit ball B of a complex Banach space 

with f ( )0 0= . If

[ ( )] ( )( , ) , ,Df x D f x x x B− ⋅ ≤ ∈1 2 1

then f is a starlike mapping of order 1/2 on B.

Using the above sufficient condition, we will prove 
the following theorem (cf. [23, Theorems 5.5 and 5.7]).
Theorem 3.12.  Let F be a linear-invariant family on 

the unit ball B of a JB*-triple X with  ord X ,1 F = < ∞α . 

If f ∈F , then f is a starlike mapping of order 1/2 on Brs
, 

where rs ∈( , )0 1  is the unique solution of the equation

2 2
1

1
2

2 2
r r

r
+

−
=α

( )
. 

Proof. From Lemma 3.8,

 

  

[ ( )] ( )( ( ) , ( ) )
( ){ , , }

Df x D f x Dg y Dg z
Dg y x z Dg

x x

x x

−

+

1 2 0 0
2 0 2 α (( ) .0     ⋅ ⋅y z

Also, we have  Dgx( )0 1≤  and    [ ( )] /( )Dg xx 0 1 11 2− ≤ −
   [ ( )] /( )Dg xx 0 1 11 2− ≤ −  from (2.5) and (2.6). Therefore, putting 

y Dg xx= −[ ( )]0 1  and z Dg wx= −[ ( )]0 1  with  w = 1 and 
using (2.1), we obtain that

 

      

[ ( )] ( )( , )

( ) [ ( )] [ (

Df x D f x x w

Dg Dg x x Dgx x x

−

−⋅ ⋅ ⋅

1 2

12 0 0 0 ))]

( ) [ ( )] [ ( )]

(

−

− −+ ⋅ ⋅

+
−

1

1 1

2

2 0 0 0

2 2
1

w

Dg Dg x Dg w

r r
r

x x x



     α

α 22 2)
,

where r x=  . From Proposition 3.11, f is a starlike 
mapping of order 1/2 on Brs

. This completes the proof.
� □

Before to give the following result, we have to 
introduce some notations, as follows. This result 
relates the radius of univalence of a linear invariant 
family with the radius of nonvanishing of this family.
    Let 

 

r r

r f x x r f
0 0

0 0 0

=
= > ≠ < < ∈{ }

( )

sup : ( ) , ,

F

F 

and let r r1 1= ( )F  denote the radius of univalence of the 
linear invariant family F, i.e. 

r r f B fr1 0= > ∈{ }sup : , .is univalent on F

Then, we obtain the following result. This result is a 
generalization of [24, Lemma 2.4], [23, Theorem 5.11], 
[9, Theorem 3.4] and [10, Theorem 3.5] to the unit ball 
of a JB*-triple. We remark that if  ord X ,1 F = < ∞α , 
then r0 0>  from Theorem 3.12.
Theorem 3.13.  Let F be a linear invariant family on 

the unit ball B of a JB*-triple X. Assume that r0( )F > 0. 

Then 

r
r

r
1

0

0
21 1

=
+ −

.

Proof. Let f F∈  and r
r

r
≤

+ −
0

0
21 1

. Also, let y z Br, ∈  

with y z≠ . Let

F w x

Dg Df g f g w f gx x x x

( ; )

[ ( )] [ ( ( ))] ( ( ( )) ( ( ))),= −− −0 0 01 1  

� (3.10)

w x B, ,∈  where gx is the biholomorphic automorphism 
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Linear invariant families on the homogeneous ball of a complex Banach space

of B, given in (2.3). Clearly, F x( ; ) ,⋅ ∈F  for all x B∈ ,  
and if we set x y=  and w g zy= −1( ) in (3.10), we obtain 
that

  
F g z y

Dg Df y f z f y

y

y

−

− −

( )
= −

1

1 10

( );

[ ( )] [ ( )] ( ( ) ( )). 	 (3.11)

From (2.11), we obtain

1
1 1

1
1
1

2 2 2

2

2 2

2 2− ≥ − −
+ ⋅

> −
+−g z y z

y z
r
ry( ) ( )( )

( )
( )
( )

.
   

   

Therefore, we have 

g z g z r
r

ry y
−

−= <
+

≤1
2 0

2
1

( ) ( ) .

Since g zy
− ≠1 0( )  for y z≠ , we have F g z yy

−( ) ≠1 0( ); . 
Then, we conclude from (3.11) that f y f z( ) ( )≠ , that 

means f is univalent on Br . Therefore, r
r

r
1

0

0
21 1

≥
+ −

. 

Also, since r0 0> , we deduce that r1 0> .
In the second part of this proof, we will show that 

r
r

r
1

0

0
21 1

≤
+ −

. To this end, let x B∈  with 0
2

1
1

1
2< <

+
 x

r
r

0
2

1
1

1
2< <

+
 x

r
r

. Then there exists a B∈  such that x g aa= ( ) and 

0 1< < a r  by (2.8). After short computations, we 
obtain the following relations 

F a a Dg Df a f x f aa( ; ) [ ( )] [ ( )] ( ( ) ( ))= −− −0 1 1

and 

F a a Dg Df a f aa( ; ) [ ( )] [ ( )] ( ),− = − − −0 1 1

where F is defined by (3.10). Therefore, we have 

f x Df a Dg F a a F a aa( ) ( ) ( )( ( ; ) ( ; ))= − −0 .

Since 0 1< < a r , F a a F a a( ; ) ( ; )≠ − . Hence, f x( ) ≠ 0. 

This implies that r
r
r0
1

1
2

2
1

≥
+

. This is equivalent to 

r
r

r
1

0

0
21 1

≤
+ −

. This completes the proof.� □

Corollary 3.14.  Let F be a linear invariant family on 

the unit ball B of a JB*-triple X. Assume that r0 1( ) .F =  

Then F is a family of normalized univalent mappings 

on B.
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