楔デバイス付接合部を有する7層3スパン架構の地震応答解析

高松 隆夫*・玉井 宏章**・澤田 樹一郎***・景山 朋定****・山西 央朗*****

(平成24年10月31日受付)

Earthquake response behavior of seven-story-three-layer framed structure with wedge-device connections beam-to-column connection

Takao TAKAMATSU, Hiroyuki TAMAI, Kiichirou SAWADA, Tomosada KAGEYAMA and Teruaki YAMANISHI

(Received Oct. 31, 2012)

Abstract

Earthquake response analysis of steel framed structures with column-bases and end-plate type beamconnections by use of the wedge-device were carried out and the results showed reduction of residual horizontal displacements at each story. This paper proposes wedge-device beam connections with bolts guaranteed elongation capability until huge earthquake vibration. Earthquake response results of structures with various connections and column-bases show sufficient elongation of the bolts and effective function of the wedge-device for reduction of residual deformation.

Key Words: wedge-device connection, end plate type, earthquake response analysis

1. はじめに

現在の耐震設計では、部材に塑性ヒンジを形成させ、地 震エネルギーを吸収させる保有水平耐力設計法が用いられ ている。このとき、全体崩壊型の崩壊機構とし、バランス よくエネルギー吸収させることで構造物の倒壊を防ぐこと ができる。しかしながら、この場合、架構に損傷を与える ため地震後の構造物に、残留変位を生じる恐れがある。残 留変位が過大なものであると、構造物の地震後継続使用が 困難となり、修復が不可能な場合は取り壊しを余儀なくさ れる。構造物を破棄することによる社会的損失は非常に大 きく、環境への影響も問題視されている。また、残留変位 の影響で、避難通路の扉や窓が損傷し、開閉が不可能とな り、避難・救助が困難となった事例が兵庫県南部地震から 報告されている。

一方,著者等はこれまでに楔デバイス付接合部の研究を 行ってきた¹⁻⁹⁾。楔デバイス付接合部とは,露出柱脚やエン ドプレート形式の梁継手において、楔デバイスを用いるこ とで、原点立上り型復元力特性を得られる工法である(以 降、楔デバイスを用いた柱脚をノンスリップ型露出柱脚, 梁継手を楔デバイス付梁継手と呼ぶ)。既報の研究^{8.9)}か ら、この接合部を鋼構造架構に導入すれば、地震後残留変 位をほぼ0にできることを明らかにしている。

しかしながら,解析モデルとしては,6層3スパン架構 のみで行われており,異なる架構で解析を行っても残留変 位低減効果が得られることを確認していなかった。

さらに,接合部をボルト接合としているが,楔デバイス 付梁継手のボルトの有効長さは楔デバイスとエンドプレー ト2枚分の厚さのみとなるため十分な変形能力を持ってお らず,ボルトが早期に破断する恐れがあった。

そこで、本論文の目的はボルトの有効長さを確保した楔 デバイス付梁継手の提案と、新たな解析モデルを用いた場 合の楔デバイス付接合部の効果を確認することである。方 法として、まず、実状に沿った鋼構造架構の解析モデルを

^{*} 広島工業大学工学部建築工学科

^{**} 長崎大学工学部工学科

^{***} 鹿児島大学大学院理工学研究科

^{**** (}初景山構造設計事務所

^{*****} 東京工業大学都市工学地震センター

作成し,数値解析を行う。その後,結果を整理し,提案す る楔デバイス付梁継手の性能を検証する。

2. 楔デバイス接合部

図1に楔デバイスを,図2にノンスリップ型露出柱脚 を,図3に楔デバイス付梁継手を,それぞれ,示す。

2.1 概要

楔デバイス付接合部とは、エンドプレート形式の接合部 において、ナット-エンドプレート間に楔デバイスを設置 し、復元力特性が原点立上り型となる接合部である。接合 部の耐力を母材(柱・梁)の8割程度とし、接合部ボルト のみを降伏させる。母材を弾性状態に留めるため、架構に 残留変位は生じない。また、ボルトには伸び性能の高い転 造ねじアンカーボルトを用い、十分な有効長さを確保する。 楔デバイス付梁継手において、ブラケットの断面は梁の全 塑性モーメントに対して弾性範囲に留めるよう設計する。

作動概念としては、楔デバイス付接合部に曲げモーメン トが作用すると、ボルトが伸び変形し、降伏して塑性伸び を生じる。ここで、荷重を除荷することによりエンドプ レート間に間隙が生じる。この間隙にバネの復元力によっ て楔を貫入させ、間隙を埋めることができる。このため、 再び曲げモーメントが作用した場合においても、スリップ 現象が起こらず、即座にボルトが抵抗する。

図2 ノンスリップ型露出柱脚

図3 楔デバイス付梁継手

2.2 提案する楔デバイス付梁継手

提案する工法(図3)はエンドプレートを4枚用いるこ とで、ボルトの有効長さの確保が可能なディテールとして いる。楔デバイスは梁中央側のエンドプレートに設置し、 柱側のエンドプレートにはボルトの抜け止めとして内ナッ トを設けている。また、圧縮合力点位置に過大な圧縮力が 作用することが考えられるため、接合部のフランジ厚を大 きくするといった補強が必要となる。

3. 地震応答解析

本解析では,7層3スパンラーメン架構について,柱脚 形式と梁継手形式を変数とした解析モデルを作成し,数値 解析を行う。

3.1 解析手法

地震応答解析には、「CLAP. f^{10,11)}」を楔デバイス付接合 部の原点立上り型復元力特性を有する回転ばねが利用でき るようにコード修正したものを用いる⁸⁾。部材の塑性化は、 一般化硬化ヒンジ法により考慮する。

本解析例では、ニューマークβ法のβ値0.25.数値積分 時間間隔1/200秒,減衰のタイプは瞬間剛性比例減衰とし、 一次減衰定数は、一般的な構造物を想定して0.02としてい る。また、部材の応力度-ひずみ度関係は、bi-linear型(降 伏後剛性比1/100)としている。尚、床スラブによる梁の合 成効果による剛性・耐力の増加、柱脚の変動軸力による影 響は考慮していない。

入力波には, El Centro 波 NS 成分, Taft 波 EW 成分および八戸波 NS 成分を, 100 kine 級となるように最大加速度を基準化した波を用いる。

3.2 ボルト接合部の評価式

図4に抵抗機構を、図5にボルト接合部復元力特性モデ ルを、それぞれ、示す。

接合部の復元力特性は、ボルトの配置を、柱脚では4 列、梁継手では5列の多数配列で行っているため、引張抵 抗するボルトの数だけ弾性勾配を生じる。しかしながら、 勾配の数による復元力特性の違いが架構に与える影響は小 さいため、本解析では bi-linear 型の復元力特性モデルを使 用する。

本ボルト接合部に曲げモーメントが作用した場合, 柱脚 においては柱フランジ位置, 梁継手においてはエンドプ レート端部を圧縮合力点位置とし, 最外列および, 中央列 のボルトが引張抵抗する。尚, 最内列のボルトは, 最外列 と比較して, 5%程度の回転剛性しか有していないため, 考慮しない¹²⁾。また, 最内列以外のボルトが降伏した時点 を最大耐力発揮時と考え, その時のボルト接合部曲げモー メントを最大曲げモーメントとする。

地震応答解析では、ボルト接合部を回転ばねとし、3.1節 の設計条件を満たすよう設計した。それぞれの特性値は、 以下の式を用いて算出した。

$$K_i = \frac{E \cdot n_i \cdot A \cdot d_i^2}{R \cdot l_b} \tag{1}$$

$$M_{Yi} = n_i \cdot A \cdot \sigma_Y \cdot d_i \tag{2}$$

$$K = \sum_{i=1}^{j-1} K_i \tag{3}$$

$$M_U = \sum_{i=1}^{j-1} M_{Y_i}$$
(4)

図5 復元力特性モデル

ここに、 K_i : *i* 列目の弾性回転剛性、E: ヤング係数、 n_i : *i* 列目のボルト本数、A: ボルトの断面積、 d_i : 圧縮合 力点位置から*i* 列目のボルト中心までの距離、R: ボルト以 外の要素の弾性変形を考慮した低減係数 (=2)¹³⁾、 l_b : ボ ルトの有効長さ (ナット間距離)、 M_{Yi} : *i* 列目のボルトに よる降伏曲げモーメント、 σ_Y : ボルトの降伏応力度、K: 弾性剛性、 M_U : ボルト接合部の最大曲げモーメントであ る。また、最外列を1列目とし、最内列を5列目とする。

3.3 解析対象架構

図6に解析モデルを、図7に寸法値概要を、図8に梁継 手詳細図を、表1に部材リストを、表2に回転ばね特性値 を、表3に各接合部寸法値を、それぞれ、示す。

図8の梁継手詳細図は2,3,4,5層における楔デバイス付 梁継手の寸法である。架構は、柱に角形鋼管を、梁にH形 鋼を用いて、各接合部を剛とした場合、1次設計における 許容応力度のチェックおよびベースシヤ係数0.2に対する層 間変形の制限1/200 radを満足している。また、2次設計 においては、層間変形角の限界値を1/100 radとして保有 水平耐力の確認を行い、崩壊機構を全体崩壊としている。 尚、部材種別はFBランク以上を用いている。また、設計 の参考として文献14)を使用している。

構成要素としては,柱には2節点ビーム要素,梁には節 点に質量を有する2節点ビーム要素を用いる。また,各質 点は,事務所ビルを想定して算出している。

解析モデルは各接合部形式を変数としており、柱脚に

層	種 別	断面寸法	$\sigma_{\rm y} \over ({\rm N/mm^2})$	$I_x (mm^4)$	$Z_p \pmod{(\mathrm{mm}^3)}$	M _p (kNm)	表2 [回転ばね特性値
1, 2, 3, 4 5	柱	$\Box -550 \times 550 \times 22$ $\Box -550 \times 550 \times 19$	295 295	2.04×10^{9} 1.81×10^{9}	8.75×10^{6} 7.70×10^{6}	2,581 2,272	部位	K (kNm/rad)
6, 7 2, 3, 4, 5	· 梁 ブラケット	$\450 \times 450 \times 16$ H-588 × 300 × 12 × 20 BH-588 × 300 × 20 × 29	295 325 325	8.29×10^{6} 1.14×10^{9} 1.61×10^{9}	4.33×10^{6} 4.35×10^{6} 6.27×10^{6}	1,277 1,414 2,037	 柱脚部 2,3,4,5層梁継手 6 層梁継手部 	4.52×10^{5} 部 4.47×10^{5} 2.63 × 10 ⁵
6	梁 ブラケット	H-488 × 300 × 11 × 18 BH-488 × 300 × 18 × 26	325 325	6.89×10^{8} 9.58×10^{8}	3.13×10^{6} 4.46×10^{6}	1,017 1,449	7,R 層梁継手部 R 層柱頭部	$2.10 \times 10^{5} 4.39 \times 10^{5}$
7, R	梁 ブラケット	$\begin{array}{c} \text{H-440} \times 300 \times 11 \times 18 \\ \text{BH-440} \times 300 \times 18 \times 26 \end{array}$	325 325	$5.47 \times 10^{8} \\ 7.62 \times 10^{8}$	$\begin{array}{c} 2.76 \times 10^{6} \\ 3.94 \times 10^{6} \end{array}$	897 1,282	-	

表1 部材リスト

 σ_y :降伏応力度 I_x :断面2次モーメント Z_p :塑性断面係数 M_p :全塑性モーメント

表3 各接合部寸法值

部 位	$d_1 \ (\mathrm{mm})$	$d_2 \ (\mathrm{mm})$	$d_3 \ (mm)$	$d_4 \ (m mm)$	l_b (mm)	<i>φ</i> 呼び径	ボルト 材質	_{BR} L (mm)
柱脚部	650	400	150	_	1040	M45	ABR490	_
2,3,4,5層梁継	手部 518	406	294	182	300	M42	ABR490	650
6 層梁継手音	ß 424	334	244	154	300	M39	ABR490	650
7, R 層梁継手	部 376	298	220	142	300	M39	ABR490	650
R層柱頭部	525	225	-	-	300	M48	ABR400	-

は、固定柱脚(剛接合 (Rtype))・アンカーボルト降伏型露 出柱脚 (Stype)・ノンスリップ型露出柱脚 (Ntype)を、梁 継手には剛接合 (Rtype)・楔デバイス付梁継手 (Wtype) を、それぞれに用いた、計6種類のモデルを作成する。

Stypeの柱脚には、スリップ型復元力特性を有する回転 ばねを、Ntypeの柱脚には、原点立上り型復元力特性を有 する回転ばねを、Wtypeの梁継手には、原点立上り型復元 力特性を有する回転ばねとブラケットとを配置する。ま た、ブラケットはWtypeにのみ配置するものとし、Rtype の梁は均一断面とする。

尚, Wtype 最上階の中柱接合部については,他の接合部 と異なり,柱頭部に回転ばねを配置している。これは,一 般的な梁降伏型架構において,節点振り分け法によって塑 性ヒンジ生成位置を考慮した場合,柱頭部に塑性ヒンジが 生成されるためである。

4. 結果と考察

表4に解析モデル毎の1次固有周期を、図9には最大層 間変形角 $max R_i \varepsilon$,図10には残留変位 $last \delta_i \varepsilon$,図11にはエ ネルギー吸収量を、それぞれ、示す。

尚,図10に示す変位量は地震後の各層の層間変位を累加 して求めた地盤からの相対変位である。図11のエネルギー 吸収量は、各層の層せん断力 – 層間変位関係の履歴面積か ら算出している。以降は、これを損傷量として取り扱う。

表4 固有周期

 M_U

(kNm)

1,993

1.145

772

692

1.022

柱脚形式	-	梁継手形式	1次固有周期(sec)
R type	_	R type W type	1.16 1.22
S type	S type – R type W type		1.21 1.28
N type –		R type W type	1.21 1.28

4.1 固有周期

表4より,剛接合となる箇所が増すことで,一次固有周 期が短くなる傾向となっており,柱脚と梁継手を剛接合と した R-Rtype が最も短い固有周期となっている。固有周期 は回転ばねを入れて求めており,回転ばねの数が増えるほ ど固有周期は長くなっている。

4.2 最大層間変形角

図9より,梁継手を剛接合とした架構と楔デバイス付梁 継手とした架構とを比較すると,全体的に近い値となって いるが,層毎で大小関係が変化している。これは,各接合 部の復元力特性の違いによるものである。剛接合の場合, 塑性ヒンジの復元力特性は完全弾塑性型であるため,応答 値が一方向に漸増する場合がある⁹⁾。また,最大層間変形 角が生じる直前に,その反対方向に塑性変形を生じていた 場合には,最大層間変形角が減少する。一方,楔デバイス

付接合部の復元力特性は、原点立上り型であり、応答値は 常に原点から生じる。このため、継手に楔デバイス付梁継 手を導入した架構と、剛接合とした架構の最大層間変形角 を比較すると、地震波によって大き目になる場合も小さ目 になる場合もある。

4.3 残留変位

図10より、楔デバイス付梁継手を導入した架構の残留変

位は、ほぼ0になっている。これは、塑性ヒンジの復元力 特性が原点立上り型となっていることに起因しており、楔 デバイス付接合部によって残留変位が低減していることが わかる。また、柱脚が剛接合である R-Wtype、スリップ型 復元力特性である S-Wtype においても、1層目の残留変位 が低減している。これは、1層目の損傷が、柱脚よりも梁 継手のほうが大きく、柱脚の復元力特性が残留変位に与え る影響が比較的少なかったためである。

El Centro 波 R-Rtype・N-Rtype と Taft 波の継手を剛接合 (Rtype)とした場合を見ると,継手が剛接合であるにも関 わらず,残留変位は頂部でも 25 mm 程度である。八戸波の ものと比べると小さな値となっており,地震波の種類に よって大小関係が変化していることがわかる。残留変位は 架構の塑性変形が片方向に偏って生じた場合に大きくな る。逆に,残留変位が正負両方向に均等に生じた場合,片 側に生じた塑性変形が戻される形となるため,残留変位と しての変位が表れにくい。図10のエネルギー吸収量と残留 変位には比例関係がないこともこのことが原因である。し かしながら,架構の地震時挙動特性は,地震波の性状に大 きく左右されるため,この現象に期待するのは現実的でな い。一方,楔デバイス付接合部を導入した架構は,損傷量 や地震波に関わらず,確実に残留変位を低減できる。

150 mm 近くの大きな変形が残った八戸波 R-Rtype, SRtype でも平均変形角を見れば約 1/170 rad であり,生じ た残留変形はそれほど大きくないことが分かる。しかしな がら,層毎の残留変形角として見ると,1・2層目では約 1/100 rad と非常に大きな損傷が架構に生じており,地震後 継続使用が困難で,避難や救助の面においても支障をきた す恐れがある。一方,楔デバイス付架構は,地震によって 建物が大きく揺らされることにより,仕上げ材が損傷する ことはあっても,接合部ボルトのみを降伏させるシステム であるため,架構自体に生じる残留変形を微小なものにす ることができる。このために,損傷した仕上げ材等の補修 や,接合部ボルトの交換によって,建物を地震後も継続的 に使用できることが期待される。

4.4 損傷量とボルトの伸び性能

図11より,地震波毎に損傷量が異なっているが,解析モ デルの損傷分布傾向は,概ね同様であることがわかる。柱 脚毎に比較すると,Rtypeにおいては,下層より中間層の 損傷の方が大きく,Stype・Ntypeでは反対に,中間層より 下層の損傷量が大きくなる傾向がある。これは,Rtypeの 柱脚部では,柱に塑性ヒンジができるため,半剛接合であ るStype,Ntypeよりも耐力・剛性が高いことに起因してい る。継手毎に比較すると,El Centro 波・八戸波ではRtype が大きくなるが,Taft 波ではWtype が大きくなっており, 地震波によって違いがあることがわかる。

最も損傷量の大きかった Taft 波 S-Wtype 2層目, N-Wtype 1層目の継手最外列ボルトの伸びを見ると, 4.3%と4.8%に なっている。転造ねじアンカーボルトは10%以上の伸び量 が確保されている¹⁵⁾ため, 100 kine 級の地震を受けてもボ ルトが破断しないことがわかる。

5. 結 論

本論文では、ボルトの有効長さを確保した楔デバイス付 梁継手を提案し、楔デバイス付接合部を導入した鋼構造架 構の地震応答解析を行い、架構の地震時挙動の特徴を明ら かにした。得られた知見を以下に示す。

- ボルトの有効長さを確保した楔デバイス付梁継手の 最外列ボルトは、100 kine 級の地震波を受けても破 断せず、まだ余力を残している。
- 2) 楔デバイス付梁継手を導入した架構は、実構造物を 想定したモデルで解析を行っても、地震後残留変位 を大幅に低減できる。
- 注脚を固定にした場合においても、楔デバイス付梁 継手を導入すれば、残留変位を低減できる。

提案・検討している接合部は、エンドプレート間で接触・離間が発生する接合部形式である。このため、床スラ ブの影響や、柱の拘束効果による圧縮軸力¹⁶⁾が生じ、ボル ト接合部耐力の上昇や母材(梁・ブラケット)の降伏曲げ モーメントが低下することが考えられる。その場合、母材 が降伏・塑性変形等異なる崩壊機構が発生する可能性があ るが、本論文では、これらを考慮できていない。また、本 論文のディテールでは、圧縮合力点において過大な繰り返 し力を受けることが考えられるが、それに対する設計法も 考慮できておらず、複雑な形状になるため施工面に関して も課題が残される。

今後,上述の影響を考慮した検討を行い,更に一般的な 復元力特性モデルの定式化や,施工性にも考慮したディ テールの提案を行って,数値解析等により楔デバイス付接 合部の有効性を明らかにしていく予定である。

辞

謝

本研究は,広島工業大学「高性能構造システム開発研究セ ンター」(代表者 高松隆夫教授)のプロジェクト研究の一 環として実施されました。ここに記して,謝意を表します。

文 献

 Takao TAKAMATSU, Hiroyuki TAMAI: Non-slip-type restoring force characteristics of exposed-type column base, Journal of Constructional Steel Reserch, Vol. 61, pp. 942–961, 2005.

- 高松隆夫,玉井宏章,山西央朗:ノンスリップ型鉄骨 露出柱脚の復元力特性モデル,構造工学論文集,Vol. 51 B, pp. 293-302, 2005.4.
- 高松隆夫,玉井宏章,山西央朗,松尾 彰:ノンス リップ型露出柱脚のセルフセンタリング性能に関する 研究,鋼構造年次論文報告集,第13巻, pp. 173-180, 2005.11.
- 4) 玉井宏章,高松隆夫,山西央朗,白木 剛,多田 元秀:統合化評価法を用いた実大ノンスリップ型露出 柱脚の仮動的実験,鋼構造年次論文報告集,第14巻, pp. 269-276, 2006.11.
- 5) 山西央朗, 高松隆夫, 玉井宏章, 松尾 彰:アンカー ボルトを多数配列したノンスリップ型露出柱脚の復元 力特性-無軸力下の場合のセルフセンタリング性能, 日本建築学会構造系論文集, 第621号, pp. 155-162, 2007.11.
- 6)山西央朗,高松隆夫,玉井宏章,松村高良,松尾
 彰:2軸曲げを受ける従来型およびノンスリップ型露
 出柱脚に関する実験的研究,日本建築学会構造系論文
 集,第73巻 第634号, pp. 2223-2230, 2008.12.
- 7)高松隆夫,玉井宏章,山石健司,山西央朗:エンドプレート形式ト字型柱梁接合部のセルフセンタリング性能,鋼構造年次論文法報告集,第16巻,pp.237-244,2008.11.
- 8) 高松隆夫, 玉井宏章, 澤田樹一郎, 田邉真二郎, 山西

央朗: 楔デバイス付柱梁接合部を有する架構の地震後 残留変位, 鋼構造年次論文報告集, 第18号, pp. 47-54, 2010.11.

- 9) 高松隆夫,玉井宏章,澤田樹一郎,田邉真二郎,山西 央朗: 楔デバイス付接合部を有した架構の保有水平耐 力と最大層間変形角,鋼構造年次論文報告集,第19 号, pp. 755-760, 2011.11.
- 10) 小川厚治,多田元英:柱・はり接合部変形を考慮した 静的・動的応答解析プログラムの開発,第17回情報・シ ステム・利用技術シンポジウム論文集,pp.79-84, 1994.12.
- 11) 多田元英: CLAP.f 利用説明書, 解析方法説明書, 鋼材 俱楽部.
- 山西央朗,高松隆夫,玉井宏章,松尾 彰:アンカー ボルト降伏先行型露出柱脚の復元力特性モデル,鋼構 造年次論文報告集,第13巻, pp. 181–188, 2005.11.
- 13) 秋山 宏:鉄骨柱脚の耐震設計,技法堂出版, 1985.3.
- 14) 財団法人日本建築防災協会:構造設計・部材断面事例集, pp. 496-513, 2007.6
- 15) 社団法人日本鋼構造協会:建築構造用アンカーボルト を用いた露出柱脚設計施工指針・同解説, 2009.10.
- 吉敷祥一,山田 哲:高力ボルト半剛接合部に対する 柱の拘束効果に関する基礎検討,鋼構造年次論文報告 集,第17巻,pp.81-86,2009.11.