普通ボルトを用いたエンドプレート形式梁継手の載荷実験

高松 隆夫*・山西 央朗**・田邉 真二郎***

(平成23年10月27日受付)

Loading test on end-plate-type beam-joint connected by normal-bolts

Takao TAKAMATSU, Teruaki YAMANISHI and Shinjirou TANABE

(Received Oct. 27, 2011)

Abstract

Column-bases and beam-to-column connections with the wedge-device show linear-from-origin-type and returning-origin-type restoring-force characteristics and reduce residual deformation of a framed structure after an earthquake. However, these connections have some problems that seismic responses of the structures may be larger than conventionally connected structures because of decrease of horizontal load-carrying capacity.

Therefore, this paper proposes a new technique that the load-carrying capacity is equivalent to beamyield-type framed structures. From experimental results, both structures show the same load-carrying capacity.

Key Words: beam-bracket joint, end-plate form, wedge-device, loading test

1. はじめに

近年,建築物は構造安全性だけでなく,地震後の避難, 損傷制御や継続使用など,従来以上の要求が高まっている。

耐震設計では、構造物の倒壊を回避することが絶対的な 条件であり、崩壊機構より崩壊荷重を算出して、構造物の 崩壊の是非を検討する。この場合、梁端部に塑性ヒンジを 仮定するので、梁端接合部には、保有耐力接合としての耐 力・靭性を確保する必要がある。

しかしながら, 靭性を十分に確保できても, 地震後に残 留変形が生じた場合, 避難経路の扉や窓が開かなくなるな ど, 安全上の問題が生じる場合がある。このため, 構造物 の安全性を考える時には, 残留変形も大きな要因となる。

筆者等はこれまでに,エンドプレート形式の接合部(柱 脚部・柱梁接合部)において,楔デバイスを設置すること で,原点立上り型復元力特性を付与できることを示してき た(以降,これらを楔デバイス付接合部と記す)¹⁻⁸⁾。また、鋼構造架構の地震応答解析を行い、各接合部に楔デバ イス付接合部を導入すれば、地震後残留変位をほぼ0にで きることを明らかにしている⁹⁾。

しかしながら、楔デバイス付接合部はボルト(エンドプ レートを緊結するボルトを指し、以後、ボルトと記す。)の みを降伏させるため、ボルト接合部の最大曲げモーメント を、母材(柱・梁)の降伏曲げモーメントよりも低目にす る必要がある。このため、楔デバイス付接合部を導入した 架構は、一般的な梁降伏型架構より保有水平耐力が低目と なり、架構の最大層間変形角が大き目になるという問題点 があった⁹⁾。

そこで本論文では, 柱梁接合部において, 楔デバイス付 接合部のボルト接合部位置をスパン中央方向に移動させる ことで, 梁降伏型架構と同等の保有水平耐力を得られる工 法を提案し, 載荷実験を行う。

^{*} 広島工業大学工学部建築工学科

^{**} 東京工業大学都市地震工学センター

^{***} 広島工業大学大学院建設工学専攻

また,復元力特性モデルを作成し,実験結果との比較・ 検討も行う。

2. 実験概要

試験体の階高,スパン長や断面性能は,一般的なものの 1/3程度とし,柱と片側の梁とを想定したト字型柱梁接合部 を用いる。各部材の曲げモーメント反曲点位置までを取り だしたものを対象とし,載荷実験を行う。

2.1 楔デバイス付接合部の概要

図1に示すように、楔デバイスは、楔、楔受け、ばねおよ び反力板から構成されている。設置方法は、楔と楔受けを ナットとベースプレート、もしくはエンドプレートとの間に 設置し、ばねを楔とばね反力板との間に設置するのみである。

楔および楔受けは、転造ねじボルトから伝達される圧縮 力の接触面方向分力に対して、接触面における摩擦力によ り抵抗し、滑らないようにしてある。このため、楔と楔受 けの接触面には、発錆処理を施して、静止摩擦係数を増大 させる。

2.2 提案する工法

図2に本論文で提案する工法,図3にボルト接合部が最 大曲げモーメントに達した時の曲げ応力図を示す。

本工法は、一般的な梁降伏型架構と同様に、柱梁接合部 にブラケットを設ける。ここで、梁継手にエンドプレート 形式を用い、転造ねじボルトで接合し、ボルト端部に楔デ バイスを設置するものである。また、ブラケットを設ける ため、楔デバイス付接合部のボルト接合部がスパン中央方 向へ移動する。このため、ボルト接合部の耐力を変化させ ること無く架構の保有水平耐力を上昇させ、更にブラケッ トの材長によって調整も可能な機構となっている。

ブラケットを設けることで,角形・円形鋼管柱にも適用 可能な形状となっている。

設計条件を以下に記す。

- ・ボルト接合部の最大曲げモーメントは、梁の降伏曲げ モーメントの0.8倍程度とし、梁端部を弾性状態に留め る
- ・ブラケットの材長じは、ボルト接合部最大曲げモーメント時に柱フェイスの曲げモーメントが、梁の全塑性
 モーメントと同等となるように設計する
- ・ブラケットの断面性能は、梁の全塑性モーメントに対して弾性状態に保つよう設計する。ただし、梁からの応力伝播を考慮し、梁と同一の成とする

2.3 試験体

図4に試験体を、図5に接合部詳細を、図6に転造ねじ ボルトを、図7に楔デバイスを、表1に試験体の素材特性 を、表2にボルト接合部特性値を示す。ボルト接合部の特 性値は、2.2節の設計条件を満たすよう、設計した。

柱には H-200×200×8×12を,梁には H-250×125×6×9 を,転造ねじボルトには M24 を使用した。

ボルト接合部は、3列に2本ずつ、計6本の転造ねじボ ルトを用い、楔デバイスを介してダブルナットにより梁端 部をブラケットに接合する。尚、接合部における初期剛性 の増加のために、転造ねじボルトに初期軸力として、降伏 軸力の50%を導入する⁷⁾。また、パネルゾーンが塑性化し ないように、パネル部にはダブラープレート PL-220×150×6 を、両面に溶接接合する。

図6 転造ねじボルト詳細

表1 素材特性

	材 質	ヤング係数 <i>E</i> (N/mm ²)	降伏応力度 σ_Y (N/mm^2)	引張強さ σ_u $({ m N/mm}^2)$	降伏比 σ_{Y}/σ_{u} %	伸び率 <i>ɛ_f</i> %
柱フランジ	SS400	205,000	350	522	67	32
柱ウェブ	SS400	205,000	392	548	72	25
梁フランジ	SS400	205,000	299	432	69	34
梁ウェブ	SS400	205,000	364	464	78	31
ブラケットフランジ	SS400	205,000	299	448	67	38
ブラケットウェブ	SS400	205,000	398	596	67	36
エンドプレート	SS400	205,000	295	460	64	43
転造ねじボルト	ABR400	205,000	267	422	63	52

表2 ボルト接合部特性値

弾性剛性	2次勾配	降伏モーメント	最大モーメント
K_{I}	$K_{ m II}$	M_Y	M_U
kNm/rad	kNm/rad	kNm	kNm
2.16×10^{4}	5.72×10^{3}	35.3	56.5

ブラケットの断面性能について,成は,梁からの応力伝 播を考慮して梁と同一とする。更に梁の全塑性モーメント に対して弾性状態を保持する必要があるため,BH-250× 175×9×12とした。また,材長*l*については,スパン長, ボルト接合部最大曲げモーメント,梁の全塑性モーメント を考慮し,決定している。

2.4 載荷装置と載荷方法

図8に載荷装置を示す。

反力柱に取り付けた油圧ジャッキを, 試験体柱上端部に ヨークを介してピン接合し, 載荷を行う。また, 柱下端部

をピン支持、梁端部をピンローラー支持とする。

載荷方法は,層間変形角を制御値とした正負交番漸増繰 り返し載荷とする。載荷サイクルは1/1000,1/500, 1/250,1/125,1/100,1/60の各振幅を2サイクルずつ行 う。

2.5 計測方法

図9に計測位置(ロードセル,変位計)を示す。

計測値として、油圧ジャッキ先端に設置したロードセル より荷重 Pを、ボルト端部に設置したセンターホール型 ロードセルにより各ボルト軸力 T_U , T_C , T_D , を梁端部に 設置した変位計により、梁端部の水平変位 δ_h , 鉛直変位 δ_v , エンドプレートせん断滑り量 ${}_e\delta_v$, エンドプレート離間 量 δ_1 , δ_2 をそれぞれ計測する。尚、 δ_1 , δ_2 は、ブラケット 側エンドプレートからの相対変位である。また、梁端部と ブラケット端部の上フランジにひずみゲージを貼付し、材 端部のひずみを計測する。

算定値として、荷重Pより、ボルト接合部曲げモーメントMを、エンドプレート離間量 δ_1 、 δ_2 より、エンドプレート回転角 θ を次式を用いて算出する。

$M = P \cdot L_b$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(1.1)
$\delta_1 - \delta_2$																	(1.0)

ここに, $P:荷重, L_b: 梁先端支持点からボルト接合部ま$ での距離, <math>D: エンドプレートに設置した変位計間距離である。

3. 復元力特性モデル

図10に抵抗機構を、図11に履歴モデルをそれぞれ示す。 抵抗機構として、最外列及び中央列のボルトのみが抵抗 するものとし、圧縮合力点位置を梁フランジ板厚の中心と して仮定している。

機構としては、梁端部に曲げモーメントが作用するとボ ルトに伸び変形が生じ、エンドプレートが回転する。ま ず、図11中0→1の勾配は最外列ボルトと中央列ボルトと を足し合わせた弾性回転剛性である。これを K_I とする。次 いで、1→2では、最外列ボルトが降伏し、中央列ボルト のみの弾性回転剛性となる。これを K_{II} とする。中央列ボ ルトが降伏する前に除荷された場合、2→3→0のように 原点を指向する履歴をたどる。負方向の0→4→5→6→0 も同様の履歴を示す。

次に、 $0 \rightarrow 1 \rightarrow 7$ は中央列ボルトが降伏するまでは1サ イクル目と同様の履歴を示し、7で中央列ボルトが降伏 し、最大曲げモーメントとなる。7→8では最大曲げモー メントのまま、回転角のみが増加する。除荷すると8→ $9 \rightarrow 10 \rightarrow 0$ という履歴をたどる。負方向の $0 \rightarrow 4 \rightarrow 11 \rightarrow$ $12 \rightarrow 13 \rightarrow 14 \rightarrow 0$ も同様の履歴を示す。

尚, 文献(7)では, エンドプレート離間耐力を考慮した 復元力特性モデルを作成していた。しかし,本実験で使用 した試験体には,エンドプレートの面外剛性が低く,エン ドプレートの面外変形が見られた。このため,載荷初期 で,dc ≒ 0 となり,エンドプレート回転に対する接合ボル トの抵抗力が小さくなるため,本論文では復元力特性のモ デル化において,ボルト初期軸力による離間耐力の増加を 考慮していない。

3.1 耐力評価

耐力評価について, 各列ボルト降伏曲げモーメント *M_{Yi}*は, 圧縮合力点位置からの曲げモーメントの釣り合いにより,

ここで, n_i :各列のボルト本数,A:ボルト断面積, σ_Y :ボルト降伏応力度, d_i : 圧縮合力点位置から各列ボルト軸心までの距離である。

3.2 弾性回転剛性

各ボルト列の弾性回転剛性*K*_iは次式により求められる。

ここに、 $E: ヤング係数, l_b: ボルト有効長さ, R: エン$ ドプレートと柱材の弾性変形を考慮した低減係数であり,<math>R=2を採用している。

3.3 復元力特性モデル算定式

図12に本論文で使用する復元力特性モデルを示す。復元 力特性モデル算定式を以下に示す。

$K_{\rm I} = K_1 + K_2$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(4.1)
$K_{\mathrm{II}} = K_2 \cdot \cdot$										•	•	•				(4.2)

$$\theta_Y = M_Y / K_I \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.5)$$

$$\theta_U = \theta_Y + (M_U - M_Y) / K_{II} \quad \cdot \quad (4.6)$$

ここに、 $K_{\rm I}$: 弾性剛性、 $K_{\rm II}$: 二次勾配、 M_{Y} : ボルト接合 部降伏曲げモーメント、 M_{U} : ボルト接合部最大曲げモーメ ント、 θ_{Y} : ボルト接合部降伏曲げモーメント時のエンドプ レート回転角、 θ_{U} : ボルト接合部最大曲げモーメント時の エンドプレート回転角である。

4. 結果と考察

図13に載荷実験結果を示す。

(a) にボルト接合部曲げモーメント M-エンドプレート 回転角 θ 関係,(b) に圧縮合力点位置 d_c -エンドプレート 回転角 θ 関係,(c) にボルト軸力 T-エンドプレート回転角 θ 関係,(d) に層せん断力 Q-層間変形角r関係,(e) に材 端部ひずみ-計測ステップ関係を示す。

また,比較のため,(a)には復元力特性モデルを,(b) にはフランジ端部位置を,(d)には接合部を剛接合とした 梁降伏型架構の保有水平耐力をそれぞれ実験値と併せて示 す。

(a) ボルト接合部曲げモーメント-エンドプレート回転角関係

4.1 ボルト接合部曲げモーメント-エンドプレート回転角 図13(a)より,除荷時において,変形角を0にする過程 でエネルギーを必要とせず,残留変形がほぼ0になってい ることが分かる(図中○印)。

実験値と復元力特性モデルを比較して、実験値の降伏曲 げモーメントが低下している。これは、復元力特性モデル の算定においては、圧縮合力点位置をフランジ端部と仮定 しているのに対し、実験値では、エンドプレートの面外変 形により、梁図心に近い位置にあったためである(図13 (b)参照)。また、スリップ現象が生じていることが分か る。その原因としては、エンドプレートの面外変形によっ て楔デバイスが機能低下したと考えられる。しかしなが

ら、最大変形角となる載荷時においては、スリップ型の復 元力特性にはなっていない。負方向載荷については、直前 載荷と同じ履歴をたどっている(図中*i*)。また、正方向に おいては、直前サイクルの載荷時までは中央列ボルトが弾 性状態を保持していたため(図13(c)中の*k*)、最終サイ クル時には直前サイクルよりも抵抗が若干遅れている(図 中*j*)。このことから、楔の機能低下によって生じるスリッ プ現象は一定領域に留まるものと考えられる。

4.2 圧縮合力点位置-エンドプレート回転角

図13(b)より, 圧縮合力点位置はエンドプレートの回転に伴い, 梁図心から徐々に推移している。しかしながら, フランジ位置まで推移した後は, エンドプレート回転角が増大してもその位置に留まっていることが分かる(図中点線)。

4.3 ボルト軸カ-エンドプレート回転角

図13(c)より,スリップ現象が生じていることが分かる。また,最終サイクルにおいて,ボルト軸力が増加していることから,ボルトがひずみ硬化に達していることが分かる。

4.4 層せん断力-層間変形角

図13(d)より、本試験体が、梁降伏型架構と同等の保 有水平耐力(図中点線)を得ていることが分かる。また、 最終サイクル除荷時において、除荷に伴い変位がほぼ0と なっていることから、変位を0に戻す過程でエネルギーを 必要とせず、残留変位がほぼ0になることが分かる(図中 ○印)。

4.5 材端部ひずみ-計測ステップ

図13(e)より,負方向載荷時に梁端部が降伏しているこ とが分かる。これは,負方向載荷時において,圧縮側では フランジに応力が集中してしまい,降伏したと推測され る。しかしながら,残留変位はほぼ0となっており,多少 の塑性化は許容できるものと考えられる。

5. 結 論

本論文では, 柱梁接合部にブラケットを設け, ボルト接 合部位置を移動させた楔デバイス付接合部の正負交番繰り 返し載荷実験を行い, 以下のような知見が得られた。

 本論文で提案する工法を導入することにより、梁降 伏型架構と同等の保有水平耐力を得ることが出来る。

2)本論文で提案する工法の形状を用いれば、変形を0 に戻す過程でエネルギーを必要とせず、残留変位をほぼ0 に出来る。

本載荷実験に使用した試験体では、ボルト端部に楔デバ イスを設置していたが、エンドプレートの面外変形によっ て、楔の機能が低下しスリップ現象が生じている。しかし ながら、適切な補剛を行うことで、従来の原点立上り型復 元力特性を得られると考えられるため、今後はエンドプ レートの面外剛性等の検討を行い、設計法を確立していく。

謝 辞

本研究では,広島工業大学「高性能構造システム開発研 究センター」(代表者 高松隆夫教授)のプロジェクト研究 の一環として実施されました。

試験体作製にあたりまして,フルサト工業株式会社に は,転造ねじアンカーボルトを提供していただきました。 ここに改めて感謝の意を表します。

文 献

- Takao TAKAMATSU, Hiroyuki TAMAI: Non-slip-type restoring force characteristics of exposed-type column base, Journal of Constructional Steel Reserch, Vol.61, pp. 942–961, 2005.
- 高松隆夫,玉井宏章,山西央朗:ノンスリップ型鉄骨 露出柱脚の復元力特性モデル,構造工学論文集,Vol.

51 B, pp. 293-302, 2005.4.

- 高松隆夫,玉井宏章,山西央朗,松尾彰:ノンスリッ プ型露出柱脚のセルフセンタリング性能に関する研 究,鋼構造年次論文報告集,第13巻,pp.173-180, 2005.11.
- 4) 玉井宏章,高松隆夫,山西央朗,白木剛,多田元秀: 統合化評価法を用いた実大ノンスリップ型露出柱脚の 仮動的実験,鋼構造年次論文報告集,第14巻,pp. 269-276,2006.11.
- 5) 山西央朗, 高松隆夫, 玉井宏章, 松尾彰: アンカーボ ルトを多数配列したノンスリップ型露出柱脚の復元力 特性 - 無軸力下の場合のセルフセンタリング性能, 日 本建築学会構造系論文集, 第621号 pp. 155–162, 2007.11.
- 6)山西央朗,高松隆夫,玉井宏章,松村高良,松尾彰: 2軸曲げを受ける従来型およびノンスリップ型露出柱

脚に関する実験的研究,日本建築学会構造系論文集, 第73巻 第634号 pp. 2223-2230, 2008.12.

- 7) 高松隆夫,玉井宏章,山石健司,山西央朗:エンドプレート形式ト字型柱梁接合部のセルフセンタリング性能,鋼構造年次論文法報告集,第16巻, pp. 237-244,2008.11
- 8) 弘永佑太,高松隆夫,玉井宏章,山西央朗,田邉真二郎,澤田樹一郎,松尾彰:楔デバイス付接合部を有した構造物の残留変位に関する研究 その1 載荷実験,日本建築学会大会学術講演梗概集(北陸),pp.735-736,2010.8.
- 高松隆夫,玉井宏章,澤田樹一郎,田邉真二郎,山西 央朗:楔デバイス付柱梁接合部を有する架構の地震後 残留変位,鋼構造年次論文報告集,第18号,pp. 47-54,2010.11.