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Abstract
The extreme value (EV) distribution is widely used for fi tting and analyzing a long range of 

data emanated from different real-life situations.  Annual maximum water-fl ow data collected 
from a river over a considerable period of time (say, about 30 years) are found to follow the EV 
distribution very satisfactorily.  Also the distribution of annual maximum rainfall data in a re-
gion closely follows the EV distribution.  Thus these distributions have important applications 
in the works related to the fl ood frequency estimation/estimation of return period fl ood.  The 
estimation of parameters from these types of data (data following the EV type I with two pa-
rameters, EV I(2), distribution) has important use in the fi eld of hydrology to understand the 
situation more deeply.  Here an investigation is made through simulation for several pairs of 
values of a and b (parameters of the EV I(2) distribution) using different sample sizes in order 
to compare the accuracy of maximum likelihood method as well as method of moments in esti-
mating the original parameters (the pairs of values of a and b for which the simulation is done).  
A module is developed in SAS/IML which deals with a random number generation in the EV 
I(2) distribution and the subsequent estimation of parameters with method of moments and 
maximum likelihood method.  It is found that when the parameter value of a is less than or 
equal to 0.5, the method of moments produce more accurate estimators of the parameters than 
the corresponding maximum likelihood estimators for large samples (250 or more).  An error 
distribution investigation with respect to the parameters is also made with CAPABILITY and 
QQPLOT procedures in SAS/QC.  It is found that when the sample size is small (10, 100, etc.) 
the error distribution follows near normality but with the increase in sample sizes (200, 300, 
etc.) the error distribution gradually deviates much away from normality.  Some procedures in 
SAS/BASE and SAS/STAT are used in the calculation leading to the fi nal results.  

Key Words: EV I(2) distribution, Moment estimator, MLE, Simulation, Normality.  

1.  Introduction

The generalized extreme value (GEV) distribution is a fl exible three-parameter model that combines the 
Gumbel, Fréchet and Weibull maximum extreme value distributions, which has a probability density func-
tion (pdf) as 
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where z = (x–μ)/σ, and k, σ, μ are the shape, scale, location parameters respectively (cf. Gumbel, 1958).  The 
scale parameter σ must be positive, the shape and location parameters can take on any real value.  The 
range of defi nition of the GEV distribution depends on k and 1 + kz > 0.  In what follows, σ is replaced by a, 
and μ is replaced by b.  Thus a pdf of the GEV distribution is of the form

.

The range of the variable x depends on the sign of the parameter k.  The GEV distribution function is of the 
form 

,  a>0, b>0.

When k = 0, we have a pdf of the GEV distribution given by 

,  ,

which is here called a pdf of the extreme value type I (with two parameters) distribution, denoted by EV 
I(2) distribution.  The distribution function of the EV I(2) distribution is shown by 

.

The random samples are generated through simulation from the EV I(2) distribution considering the 
values of the parameters, a and b, lying in different ranges.  To achieve the above, random numbers from 
the EV I(2) distribution are drawn (in case of sample sizes of 10, 50, 100, 150, 200, 250, and 300 when sim-
ulated samples are created 200 times against each size) for the above parameters values of which lie in dif-
ferent ranges.  Based on the above sets of samples, the estimators obtained by the method of moments and 
by the method of maximum likelihood are found out and subsequently, the differences of the estimated val-
ues of the parameters from the original values of parameters are calculated.  Finally, appropriate conclu-
sion in regard to the accuracy of the different parameter estimation procedures is presented with reference 
to an important feature revealed when the parameters lie in the range of specifi c values.  Table 1 presents 
a complete list of parameter values and sample sizes used for the simulation purpose.

2.  Materials and methods 

2.1 Parameter estimation by method of moments 
The fi rst moment of the EV I(2) distribution is given by μ1' = b+0.5772157a (cf. Kite, 1977), where the value 
0.5772157 is an approximation of Euler’s constant.  The second central moment is given by 

.

The parameter estimates are obtained by replacing μ1′ and μ2 by their corresponding sample estimates 
m1′ and m2.  Thus the expressions of the above estimators reduce respectively to 

, (1)
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. (2)

The estimates of the parameters obtained by the method of moments from the simulated random 
samples generated from the EV I(2) distribution are calculated using (1) and (2).  Random samples are gen-
erated by an SAS/IML module and the method of moments estimates are also estimated by the same mod-
ule in SAS/IML.  

2.2 Parameter estimation by maximum likelihood method 
The likelihood function for a sample of size n from an EV I(2) distribution is given by 

which leads to the following 

. (3)

Differentiating (3) with respect to a and b and then equating to zero, we get the following equations 

,

,

which ultimately reduce to the following equation 

. (4)

Equation (4) on a cannot be solved analytically and thus it is to be solved iteratively.  An initial value of a 
is required and âMOM is taken as the initial value of a.  The value of a is updated by the following formula 

 (5)
where G′(a) is the derivative of G(a) in Equation (4).  The iteration in Equation (5) is repeated until G(a) is 

Table 1: Detailed list of parameters and sample sizes for simulation 
Study Parameters Sample sizes

a b 10 50 100 150 200 250 300
1 2 5 200 200 200 200 200 200 200 Number of repetitions of 

the simulation with fixed 
parameters (i.e., fixed val-
ues of a and b) and with a 
specified sample size (i.e., 
generating a fixed number 
of random samples from 
the EV1(2) distribution 
with specifi ed values of the 
parameters repeatedly)

2 0.5 10 200 200 200 200 200 200 200
3 2 0.5 200 200 200 200 200 200 200
4 0.5 5 200 200 200 200 200 200 200
5 0.4 0.5 200 200 200 200 200 200 200
6 5 0.8 200 200 200 200 200 200 200
7 0.9 2 200 200 200 200 200 200 200
8 1 2 200 200 200 200 200 200 200
9 0.7 2 200 200 200 200 200 200 200

10 0.8 2 200 200 200 200 200 200 200
11 0.6 2 200 200 200 200 200 200 200
12 0.55 2 200 200 200 200 200 200 200
13 0.53 2 200 200 200 200 200 200 200
14 0.52 2 200 200 200 200 200 200 200
15 0.51 2 200 200 200 200 200 200 200
16 0.505 2 200 200 200 200 200 200 200
17 0.5 2 200 200 200 200 200 200 200
18 0.495 2 200 200 200 200 200 200 200
19 0.49 2 200 200 200 200 200 200 200
20 0.48 2 200 200 200 200 200 200 200
21 0.45 2 200 200 200 200 200 200 200
22 0.4 2 200 200 200 200 200 200 200
23 0.4 10 200 200 200 200 200 200 200
24 0.35 2 200 200 200 200 200 200 200
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suffi ciently close to zero.  Hence âML is calculated after several iterations making G(a) suffi ciently close to 
zero.  After âML is obtained, b̂ML is calculated from the following equation

 .

In fact, âML and b̂ML are also calculated by the same SAS/IML module.  

Briefl y, following the above procedure the random samples are generated from the EV I(2) distribu-
tion at fi rst and from the samples the estimates âMOM, b̂MOM, âML and b̂ML subsequently, defi ning the modules 
in SAS/IML through coding, are obtained.  

The following estimates are generated as outcomes: 

âMOM(k) = method of moments estimate of a at the k-th sample drawing, k = 1 (1) 200,

b̂MOM(k) = method of moments estimate of b at the k-th sample drawing, k = 1 (1) 200,

âML(k)  = maximum likelihood estimate of a at the k-th sample drawing, k = 1 (1) 200,

b̂ML(k)  = maximum likelihood estimate of b at the k-th sample drawing, k = 1 (1) 200,

and based on the above estimates, mean squared errors (MSE’s) in case of the method of moments esti-
mates and of the maximum likelihood estimates of a and b are obtained respectively as 

,  ,

,  .

Again, these MSE’s are calculated with the help of SAS/BASE and SAS/STAT procedures.  The fi nal con-
clusion is achieved on examining the MSE values obtained by adopting the two estimation procedures on 
the above samples generated through simulation.  The error distributions are generated in case of both 
methods with the help of CAPABILITY and QQPLOT procedures in SAS/QC.  

3.  Results and discussion 

Tables 2 to 7 contain the results which reveal distinctive features in respect of the objective (comparison of 
the two methods) of the investigation.  These tables are the selected results of the 24 studies.  In the study 
mentioned in Table 1, the initial values were taken around a = 1 and after observing the outcomes, values 
of a were chosen in the order a = 0.9, a = 0.7, a = 0.6, a = 0.5 and a = 0.4, etc.  A striking feature (contrast) 
is noticed at this stage, which is mentioned below.  

In the range a ≤ 0.5, the method of moments estimator is found to be a better estimator than the 
competing maximum likelihood estimator with the increase in sample size (as found in Table 6, the con-
trast exists for a = 0.5, as in case of any value of a < 0.5).  The same feature does not exist for a > 0.5.  The 
above conclusion is evident on examining Table 2 (a > 0.5), Table 3 (a < 0.5), Table 4 (a > 0.5), Table 5 (a < 
0.5), Table 6 (a = 0.5) and Table 7 (a > 0.5), that is, a ≤ 0.5 for Tables 3, 5 and 6, while a > 0.5 for Tables 2, 
4 and 7.  
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Table 2 

a = 2 b = 5 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.292506 0.386844 0.163807 0.386032 71 129
50 0.086835 0.083953 0.053938 0.082367 74 126

100 0.063344 0.051452 0.051601 0.037089 60 140
150 0.031392 0.036124 0.028461 0.029944 64 134
200 0.030698 0.020222 0.029706 0.014581 60 140
250 0.03047 0.020716 0.029624 0.010578 62 138
300 0.027172 0.010962 0.024307 0.011545 51 149

Table 3 

a = 0.4 b = 0.5 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.054437 0.043247 0.055646 0.046346 88 112
50 0.043496 0.039187 0.045742 0.041645 97 103

100 0.03358 0.0331278 0.034612 0.03459 104 96
150 0.02438 0.025821 0.025513 0.026921 126 74
200 0.014015 0.013446 0.015472 0.015041 144 56
250 0.009543 0.008347 0.011534 0.008399 160 40
300 0.002375 0.000153 0.003222 0.000275 171 29

Table 4 

a = 0.52 b = 2 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.143213 0.321942 0.113142 0.304219 93 107
50 0.104962 0.303216 0.094312 0.294219 92 108

100 0.094312 0.294216 0.082142 0.264219 94 106
150 0.073242 0.243216 0.064232 0.234162 90 110
200 0.064312 0.201312 0.059422 0.193219 84 116
250 0.043212 0.18419 0.043012 0.174236 80 120
300 0.032114 0.104862 0.032104 0.093612 75 125

Table 5 

a = 0.45 b = 2 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.316432 0.543162 0.308269 0.531682 65 135
50 0.246819 0.396219 0.231942 0.364198 80 120

100 0.144312 0.261483 0.141362 0.251362 89 111
150 0.093168 0.134231 0.094368 0.121368 100 100
200 0.054263 0.032162 0.064193 0.031492 115 85
250 0.014986 0.014269 0.019269 0.011268 132 68
300 0.009216 0.009421 0.009643 0.009341 147 53
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4.  Error distribution 

Samples generated for one set of parameter values (i.e., a = 0.5 and b = 10), using different sample sizes, 
are used for the examination of error distribution.  Here our objective is to investigate the underlying pat-
tern (i.e., whether the error distribution deviates from normality or not) of the error distribution in the cas-
es of the four estimated parameters (for a and b using the methods of maximum likelihood and of moments) 
with the help of the Q-Q plot as well as with CAPABILITY procedure in SAS/QC.  In what follows, we pres-
ent the results in the cases of the four parameters for the sample sizes 10 and 300 only (though intermedi-
ate values 100 and 200 were also considered).  

Table 6 

a = 0.5 b = 2 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.24321 0.543216 0.043251 0.544216 84 116
50 0.132196 0.489326 0.035192 0.496231 92 108

100 0.094312 0.396214 0.024196 0.398242 96 104
150 0.023196 0.294361 0.233421 0.316431 101 99
200 0.019432 0.194321 0.219632 0.194319 107 93
250 0.014163 0.101642 0.141796 0.101649 110 90
300 0.009421 0.094321 0.095219 0.094412 117 83

Table 7 

a = 0.7 b = 2 n = 200
Sample 
size 

MSE(a)MOM MSE(b)MOM MSE(a)ML MSE(b)ML Number of times the method 
of moments estimate of a is 
near to the original parame-
ters

Number of times the maxi-
mum likelihood estimate of a 
is near to the original param-
eters

10 0.094212 0.364921 0.094209 0.364212 78 128
50 0.061212 0.271316 0.061021 0.263214 73 127

100 0.054121 0.143213 0.049131 0.123121 70 130
150 0.048316 0.084131 0.043212 0.071231 68 132
200 0.0321293 0.074212 0.029834 0.070012 67 133
250 0.021941 0.0694212 0.014131 0.068421 63 137
300 0.012131 0.059421 0.009832 0.052129 59 141
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4.1 Sample size (n = 10)

The error distribution of âMOM

Variance = 0.0231   Skewness = 1.3314
Kurtosis = 2.5973
Test for location

Test Statistic p Value
Student’s t t –2.5680 Pr > |t| 0.0110
Sign M –31 Pr ≥|M| <0.0001
Signed rank S –3448 Pr ≥|S| <0.0001

Graph 1: Q-Q Plot for error distribution of method of 
moments estimates of a

 

The error distribution of b̂MOM

Variance = 0.3749   Skewness = 1.0892
Kurtosis = 3.3117
Test for location 

Test Statistic p Value
Student’s t t 3.1078 Pr > |t| 0.0022
Sign M 12 Pr ≥|M| 0.1036
Signed rank S 2057 Pr ≥|S| 0.0117

Graph 2: Q-Q Plot for error distribution of method of 
moments estimates of b

The error distribution of âML

Variance = 0.0230   Skewness = 1.3257
Kurtosis = 2.5765
Test for location 

Test Statistic p Value
Student’s t t –2.5684 Pr > |t| 0.0109
Sign M –27 Pr≥|M| 0.0002
Signed rank S –3429 Pr ≥|S| <0.0001

Graph 3: Q-Q Plot for error distribution of maximum 
likelihood estimates of a

 

The error distribution of b̂ML

Variance = 0.0333   Skewness = 0.5650
Kurtosis = 0.6277
Test for location 

Test Statistic p Value
Student’s t t 1.5976 Pr > |t| 0.1117
Sign M 8 Pr≥|M| 0.2888
Signed rank S 873 Pr ≥|S| 0.2879

Graph 4: Q-Q Plot for error distribution of maximum 
likelihood estimates of b
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4.2 Sample size (n = 300)

The error distribution of âMOM

Variance = 0.0027   Skewness = –3.8523
Kurtosis = 22.8482
Test for location 

Test Statistic p Value
Student’s t t 6.5010 Pr > |t| <.0001
Sign M  63 Pr≥|M| <.0001
Signed rank S 7471 Pr ≥|S| <.0001

Graph 5: Q-Q Plot for error distribution of method of 
moments estimates of a

 

The error distribution of b̂MOM

Variance = 0.0337   Skewness = 9.6596
Kurtosis = 93.9748
Test for location

Test Statistic p Value
Student’s t t 0.6873 Pr > |t| 0.4927
Sign M –30 Pr≥|M| <0.0001
Signed rank S –3695 Pr ≥|S| <0.0001

Graph 6: Q-Q Plot for error distribution of method of 
moments estimates of b

The error distribution of âML

Variance = 0.0028   Skewness = –3.8476
Kurtosis = 22.2221
Test for location

Test Statistic p Value
Student’s t t 6.1618 Pr > |t| <.0001
Sign M 63 Pr≥|M| <.0001
Signed rank S 7431 Pr ≥|S| <.0001

Graph 7: Q-Q Plot for error distribution of maximum 
likelihood estimates of a

 

The error distribution of b̂ML

Variance = 0.0034   Skewness = 8.1770
Kurtosis = 75.2613
Test for location

Test Statistic p Value
Student’s t t 1.4176 Pr > |t| 0.1579
Sign M 12 Pr≥|M| 0.1036
Signed rank S 846 Pr ≥|S| 0.3031

Graph 8: Q-Q Plot for error distribution of maximum 
likelihood estimates of b

It can be seen from the above Q-Q plots that when n = 10 (the fi rst four graphs), the points are lying more 
or less parallel (sometimes coincident) to the straight line, which indicate that the error distributions are 
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near normal.  But when n = 300, last four graphs, the points do no longer lie parallel to the straight line re-
vealing that the error distributions deviate away from normality, which is also an interesting fi nding in 
this paper.  The existence of the above pattern is also observed for values of n = 100 and 200.  Thus, as the 
sample size increases, the error distributions deviate much away from normality.  

5.  Findings from the investigation 

1)  For a < 0.5, when the sample size increases the MSE in case of method of moments estimator is 
less than the MSE in case of the maximum likelihood estimator.  

2) The value of the parameter b does not play any signifi cant role.
3)  When a < 0.5, the number of times the method of moments estimator of the parameter a is near to 

the original parameter is much more than that in case of the maximum likelihood estimator as the 
sample size increases.  

4)  The investigation has been carried out assigning very small values to ‘a and b’, at fi rst.  Some pa-
rameter values were taken in the range less than 1 (also greater than 1) for a, and after examining 
the outcomes, the latter parameter set values were taken and it was found that a sharp feature 
(contrast) is visible in the range around 0.5.  In the range, a ≤ 0.5, the method of moments estima-
tors are found to be better than the maximum likelihood estimators as the sample size increases, 
as was mentioned in Section 3 also.  This is evident while examining the tables for values of a ≤ 0.5 
as well as a > 0.5.  

5)  When the sample size is small, the error distributions (obtained by using both methods and for 
both a and b) follow near normality.

6) As the sample size increases, the error distributions deviate much away from normality.  
7)  The observations (graph plots) on the error distribution which have been included for a = 0.5 and b 

= 10, can be obtained for other parameter set values also.  Similar patterns will follow in case of 
increase in sample sizes for other parameter set values.

6.  Conclusion in case of EV I(2) distribution

1)  Method of moments yields more accurate estimators of the parameters than the maximum likeli-
hood estimators when the values of the parameter a is less than or equal to 0.5.

2)  When the sample size is small, the error distribution in parameter estimation follows normality, 
but it gradually deviates away from normality with the increase in sample sizes.  
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