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Bohr’s Inequality on the Unit Ball of J*-algebra
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Abstract

Let G be a bounded balanced domain in a complex Banach space X and
By be the unit ball in a J*-algebra Y. We will generalise Bohr’s theorem to
holomorphic mappings f from G into By .
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1 Introduction

We first recall Bohr’s theorem for the open unit disc A in the complex plane C. Let
A = {z € C;|z|] < 1} be the open unit disc in C, and let f: A — A be a holomorphic
function with Taylor expansion

f(z) = Z a,z". Then the following inequality holds :
k=0

Z lagz®| < 1 for |z] < %

k=0
This result was originally obtained in Bohr [8] for |z| < 1/6. The fact that the inequality
is actually true for |z| < 1/3 and Riesz, Schur and Wiener independently showed that
the constant 1/3 is best possible. Other proofs were given by [22] and [23].

It is natural to consider an extension of the above result to more general domains or
higher dimensional spaces. Recently, many mathematician obtained multidimensional
generalisations of Bohr’s theorem ( cf. [1], [2], [6], [7], [12], [13] ). Such generalisa-
tions were obtained by studying the power series of a holomorphic function defined

in bounded complete Reinhardt domains in C”. These results can be summarized as
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follows:
(1.1) = < K< ! if0<p<l1
) — < = i p<1,
3e 3
1 1 logn\ ' P
11 |
(1.3) S < K<y /28" if 2 < p< oo,

3v/n n
where K is the supremum of 7 € [0,1] such that } . o|ca2®| < 1 for z € 7B

whenever | . ;ca2®| < 1 for z € Bg. Here, the sum is taken over multi-indices

a = (ag,a9,...,ay,), such that o are nonnegative integers,

n 1/p
By = zecnzuzup:(Z!Zk!”) <!
k=1

However, the above results do not give a complete generalisation of Bohr’s theorem to
several complex variables. Also, if p > 1, the above results cannot be generalised to
infinite dimensional spaces. These can be verified by putting n = 1 or letting n — oo
in the equations (1.2) and (1.3).
The aim of this paper is to prove the following theorem.

Main Theorem. Let X be a complex Banach space, Y be a J*-algebra. Let G be a
bounded balanced domain in X and let By be the unit ball in'Y . Let f : G — By be a
holomorphic mapping. If P = f(0), then we have

|Dgp(P)[D* £(0)(z)]
(1.4) Z mnwp( -

for z € (1/3)G, where pp € Aut(By) such that op(P) = 0. Moreover, the constant
1/3 is best possible.

Our result also generalises the above result due to Liu and Wang [18]. Our proof is

more simple than that of Liu and Wang [18].

2 Preliminaries

Let X, Y be complex Banach spaces and let By be the unit ball in Y. For domains
G C X, D CY, we denote by H(G, D) the set of all holomorphic mappings from G
into D. For f € H(G, D) and = € G, let D*f(z) denote the k-th Fréchet derivative of
f at z. Any mapping f € H(G, D) can be expanded into the series

=1
0= 2 D
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in a neighbourhood of the origin.
For any P € G, £ € X,

Ya(P, &) = sup{|Dg(P)¢{| : g € H(G,A),g(P) =0}

is called the infinitesimal Carathéodory pseudometric on GG, where A is the unit disc
in C. Also,

Ko(P,€) — inf {é . he H(A, G), h(0) = P, Dh(0) = ag}

is called the infinitesimal Kobayashi pseudometric on G.
A domain G C X is said to be balanced, if zG C G for all z € A. The Minkowski
function h of G is defined by

h(z) =inf{t >0: z/t € G}

for z € X. Then we have G = {x € X : h(x) < 1}.

A mapping f € H(G,Y) is said to be biholomorphic if f(G) is a domain, the
inverse f~! exists and is holomorphic on f(G). We denote by Aut(G) the set of all
biholomorphic mappings of G' onto itself.

Let L(X,Y) denote the set of continuous linear operators from X into Y. Let I be
the identity in L(X, X). For each z € X \ {0}, we set

T(LL') = {la: € L(X’ C) : lx(x) = ||:L‘||, ||lx|| = 1}'

Then T'(x) is nonempty by the Hahn-Banach theorem.

Let H and K be complex Hilbert spaces. For each operator A € L(H, K), there
exists a uniquely determined operator A* € L(K, H) such that (Az,y) = (x, A*y) for
allz € H and y € K, where (-, -) denotes the inner product in a complex Hilbert space.
A closed complex linear subspace L of L(H, K) is called a J*-algebra, if AA*A € L
for all A € L. Harris [15, Theorem 2] gave the following explicit formula for Mobius

transformations of the unit ball of a J*-algebra.

PROPOSITION 2.1 Let B be the unit ball of a J*-algebra X. Then, for each P € B, the

Moébius transformation
To(Q) = (I~ PP 2(Q + P)(I + P'Q)™ (I - P'P)"”
is a biholomorphic mapping of B onto itself with Tp(0) = P. Moreover,

Tp' =T p, Tp(Q)" = Tp-(Q"), ITp(Ql < Typy(lQI)
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and

DTp(Q)R = (I — PP)Y*(I +QP*)'R(I + P*Q)" (I — P*P)"/?

forQ e B and R € X.

3 Bohr’s theorem
To prove Main Theorem, we need the following lemma.

LEMMA 3.1 Let B be the unit ball of a J*-algebra. Then, for any P € B, there exists
a op € Aut(B) such that op(P) =0 and

1

1Dep(P)l| = —5m-
1P|

Proof: Let
pp(Q) = (I = PP*)"V*(Q — P)(I = P*Q)""(I — P*P)'.
Then, by Proposition 2.1, ¢p is an automorphism of B such that ¢p(P) = 0 and

Dep(P)Q = (I = PP*)2Q(1 — P*P) 2

1

If P =0, then we have Dpp(P)Q = Q. So, |[Dep(P)[| =1 = W

We will consider the case P # 0. We set
lp(Q) —||P
(@) = 2@ 1P
1= 1P[lp(Q)
where [p € T(P). Then g : B — A is holomorphic. Since {p((P) = (lp(P) = (|| P||,

we have

_(€=1)jr| ~
Therefore, )
_ IPIa—[|P]%) ~
Dg(CP)P = 01— CPEe for ¢ € A.
Putting ¢ =1, 7
P

Since g o ' € H(B,A) and g o pp'(0) = 0, using the infinitesimal Carathéodory

pseudometric vz on the unit ball B, we have

IDer(PIFI = vB<07Ds0P<P>P>z|Dg<P>[DsoP<P>r1DsoP<P>P|=—1_”%”—2-
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On the other hand, we set

+||P|| P
L+ |[PlCIP]
. _— P —P[*
Then h : A — B is holomorphic. Since Dh(() = , we have
1P[[(1 + ¢l[P[])?
1P|
Dh(0) = ———P.
1P|
g b B 1 ||P|]? .
ince ppoh € H(A,B), ppoh(0) =0 and D(ppoh)(0) = WDQOP(P)P, using
the infinitesimal Carathéodory pseudometric Kz on B, we have
Dop(P)P|| = K Dop(P)P) < 1Pl
|[Dep(P)P|| = Kg(0, Dpp(P)P) < - P
Therefore,
1P|
IDep(P)P|| = —L
1— P2

Since ||[Pz|]* = (P*x, P*z) = (PP*x,x) < ||P|[||[P*z|||z]l, we have [[P*|| < ||P].

Therefore,

IDep(P)QI < (1= IPIP) 21— |PIP) /2
ol
P

Thus,
[Dep(P)|| = sup [|[Dpp(P)Q|

QeB
1<
< sup o
gep 1= [P
1
L—lP|?
L L
1Pl 1= 1Pl?
1
= HlIDer(P)P]
1P|

- HDmP)ﬁu
< IDer(P)].

This completes the proof. m
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THEOREM 3.2 (MAIN THEOREM) Let X be a complex Banach space, Y be a J*
algebra. Let G be a bounded balanced domain in X and let By be the unit ball in
Y. Let f : G — By be a holomorphic mapping. If P = f(0), then we have

<1

|Der(P)D*F(0)(H)]]
(3.1) Z k'HDSOP( )l

for z € (1/3)G, where ¢p € Aut(By) such that pp(P) = 0. Moreover, the constant
1/3 is best possible.

Proof: For a fixed positive integer k, we set

k ci2mi/k
fk(z)zz—f( L )

j=1
Since G is balanced and By is convex, f; € H(G, By ). From the homogeneous expan-

sion f(z) = f(0) + Z w, we have

1 & (W M 1o X\ s DU(0)(2)
013 (10 TR i (e e )

for z sufficiently close to the origin. Since

1 ieﬂﬂjl/k _ { 1 ifl=0 (mod k),

k = 0 otherwise,

we have

wh—‘
-

From the Taylor expansion of ¢p at P, we have

oro fils) = ( *‘EzlﬂMf ))

= ¢p(P)+ Dpp(P <P+2kaf 0! )—P)—l-"'

_ Dyp(P)[D*f(0)(2F)]  Dpp(P)[D* f(0)(2*")]
- [ * 25! L

— smjie D’ — DF™ £(0)(z+m
Z U f >< D pey {;fn3>(! )

wIH

m=1

for z sufficiently close to the origin. Therefore,

1 27 4 . _ Dop(P)[D*£(0)(2%)]

(3.2) o ) wp o fr(e?2)e " dp o
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for z sufficiently close to the origin. By the identity theorem for holomorphic mappings,
this equality (3.2) holds for z € G. From this equality and the fact that pp o fr €
H(G, By), we have
Dop(P)[D*f(0)(2* 1 [
H @P( )[ f( )(Z >]”§_/ HSOPOfk H‘e zk9|d9<1 for z € G.
k! 2 J,
By the Schwarz lemma for holomorphic mappings on bounded balanced domain,
Dopp(P)[D*f(0)(2*
IDor(PIDSOC .y
where h is the Minkowski function of G. By Lemma 3.1, we have

ZIIDso LOEOI _ [1Dep(P)FO)]]
k‘HDsOP( )l O Dep (P

| Dgp(P D’“f( 1
+Z Der(P)]

for z € G,

< HPH+Zh =171

— P)+ - f(hzz)u ~ 1P+ 12D,
Thus, if A(z) < 1/3, then
Z WPerlDPTQEN < o+ 20— ippa+1 -1

Finally, we will show that the constant 1/3 is best possible.
For any r € (1/3,1), there exists a ¢ € (0,1) such that ¢r > 1/3. Then there exist
V € 0G and A € (0,1) such that

csup{||z]| : z € 0G} < ||V] and cr >

L+2\
For any U € 0By, we set

A—(
1)

lv(2)
flz)=F (c—) U,
IVl
where Iy, € T(V). Then f : G — By is holomorphic and

P =\U and F(¢) =

Let

k kY k clV(Z) :
DEfF(0)(2F) = D F(O)( ||V||) U
= KM= XY (er)rU
= k!(A2—1)A“(cr)’f§P.
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Let pp € Aut(By) be as in Lemma 3.1. Then, for z = 7V, we have

Dyp(P)[D* Dyp( Dyp(P)[D*
Z” % FOE] | Dy Z“ % FOE]

k'IIDsoP( )l 0'||D90P k?'HDSDP( )
- 1 | Dep(P)P]|

= HP|I+§ A = 1N (er)* 5
A [[Dep(P)]|

= A+ (1-er i()\cr)kl

(1 —A?)(er)
S W SR AN VA
+ 1— der
1
(1=2?)
> A+ 1;“2/\
1—A
142X\
= 1.

This implies that the constant 1/3 is best possible. This completes the proof. m
As a corollary, we obtain Bohr’s theorem for holomorphic mappings on bounded

balanced domains of a complex Banach space with values in the unit disc A in C.

COROLLARY 3.3 Let X be a complex Banach space and let G be a bounded balanced
domain in X. Let f: G — A be a holomorphic mapping. Then we have

< |k k
SSIDOEH
k!
k=0
for z € (1/3)G. Moreover, the constant 1/3 is best possible.

Remark 3.4 Let By be one of the four classical domains in the sense of [16]. Then By
is the unit ball of a J*-algebra [15]. Hence, the above theorem generalises a result due
o [18]. On the other hand, in [1, Theorem 8], he obtained the above corollary when G
is a bounded balanced domain in C". However, in [1], he assumed that G is convex to
deduce that the constant 1/3 is best possible. In the above corollary, we do not need

the convexity of G.
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